

Beneficial Effects of Continuous Positive Airway Pressure Treatment in Obstructive Sleep Apnoea: The Evidence

Maria R. Bonsignore, MD^{1,2}, Oreste Marrone, MD² and Walter T. McNicholas, MB, BCR, BAO, MD, FRCPC, MRCP³

¹Biomedical Department of Internal and Specialist Medicine DiBiMIS, University of Palermo, Palermo, Italy; ²Institute of Biomedicine and Molecular Immunology IBIM, National Research Council CNR, Palermo, Italy; ³Department of Respiratory and Sleep Medicine, St Vincent's University Hospital, Dublin, Ireland

ABSTRACT

Several meta-analyses have been published on the effects of obstructive sleep apnoea treatment with continuous positive airway pressure. However, an updated, evidence-based summary on the effects of continuous positive airway pressure on outcomes should help clinicians and researchers to navigate through the existing literature, since a PubMed search using the keywords continuous positive airway pressure (CPAP), "obstructive sleep apnea" and "meta-analysis" retrieved over 100 papers (July 2016). The aim of this review is to provide updated evidence-based information on the effects of continuous positive airway pressure on mortality, cardio-metabolic outcomes, inflammatory markers, sleepiness, car accidents, cognitive dysfunction, and quality of life in obstructive sleep apnoea. Recent randomised controlled trials and longitudinal studies not yet included in meta-analyses will also be discussed. Overall, evidence exists for positive effects of continuous positive airway pressure treatment on mortality, systemic hypertension, daytime sleepiness and car accidents, and quality of life. Positive effects on cognitive dysfunction, cardiovascular outcomes, and metabolic and inflammatory variables are still uncertain and require further study. (BRN Rev. 2017;3:42-55)

Corresponding author: Maria R. Bonsignore, marisa@ibim.cnr.it

Key words: Cardiovascular comorbidities. Continuous positive airway pressure (CPAP). Meta-analysis. Obstructive sleep apnoea (OSA).

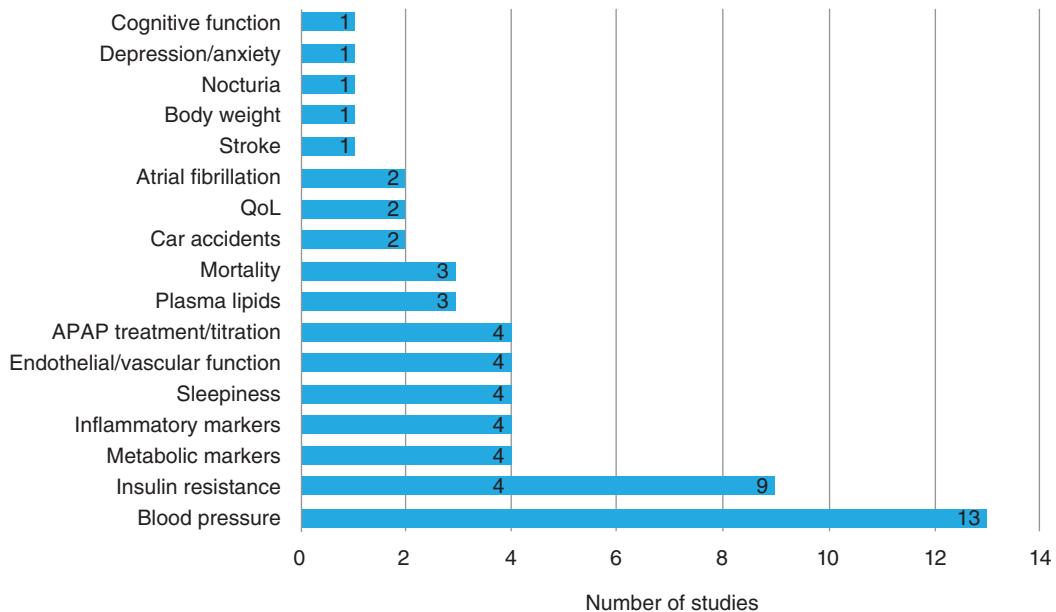
Correspondence to:

Maria R. Bonsignore
DiBiMIS, University of Palermo
Via Trabucco 180
90146 Palermo, Italy
E-mail: marisa@ibim.cnr.it

Received in original form: 06-10-2016
Accepted in final form: 18-11-2016
DOI: 10.23866/BRNRev:2017-M0037

INTRODUCTION

In 1997, the first systematic review on the health effects of obstructive sleep apnoea (OSA) and the effectiveness of continuous positive airway pressure (CPAP) treatment recognised a positive effect of CPAP on sleepiness, but concluded that, due to lack of adequately performed studies, “the relevance of OSA to public health has been exaggerated” and “the effectiveness of CPAP has been poorly evaluated”¹. The scientific community reacted with deep discomfort, but the paper effectively highlighted the need for evidence-based data on OSA and its treatment. Almost 20 years later, a PubMed search using the keywords “CPAP”, “obstructive sleep apnea” and “meta-analysis” retrieved over 100 papers (July 2016). This review aims at summarising such huge amounts of information by focusing on some relevant outcomes, namely the effects of CPAP on mortality, blood pressure, metabolic outcomes, sleepiness, driving and occupational accidents, cognitive dysfunction, and quality of life in patients with OSA. We excluded meta-analyses not reporting studies on the effects of CPAP (n = 48), those on nasal steroids (n = 2), positional therapy (n = 1), upper airway surgery (n = 4), and mandibular advancement devices (n = 3). In addition, we did not consider meta-analyses on the effects of CPAP on pulmonary hypertension (n = 2), post-operative outcomes (n = 2), sexual dysfunction (n = 1), use of automatic positive airway pressure devices for treatment (n = 5), or pressure titration (n = 1), or nocturia (n = 1). Finally, the results of recent randomised or longitudinal studies on cardiovascular outcomes of major clinical relevance, but not yet included in meta-analyses, will be briefly discussed.


Figure 1 summarises the number of meta-analyses published for each of the items chosen for this review article. Double-digit numbers were found for blood pressure, metabolic variables, and sleepiness/cognitive dysfunction. Three to five meta-analyses analysed data on the effects of CPAP on mortality, driving or occupational accidents, inflammatory markers, and endothelial/vascular function. Fewer meta-analyses were published on the remaining items listed above. Overall, the full spectrum of medical consequences of OSA has been considered. However, the picture is still incomplete and will be further refined when the results of on-going trials on outcomes of treated and untreated OSA in patients with cardiovascular diseases will become fully available.

EFFECTS OF CONTINUOUS POSITIVE AIRWAY PRESSURE ON MORTALITY

Increased cardiovascular mortality has been reported in meta-analyses on patients with untreated severe OSA^{2,3}. Three meta-analyses have assessed the effects of CPAP treatment by analysis of observational cohorts, and reported either a non-significant protective trend⁴, or decreased cardiovascular mortality in patients on CPAP⁵. The protective effect of CPAP has been recently confirmed by the largest meta-analysis to date, with regard to both all-cause and cardiovascular mortality in patients with severe OSA⁶.

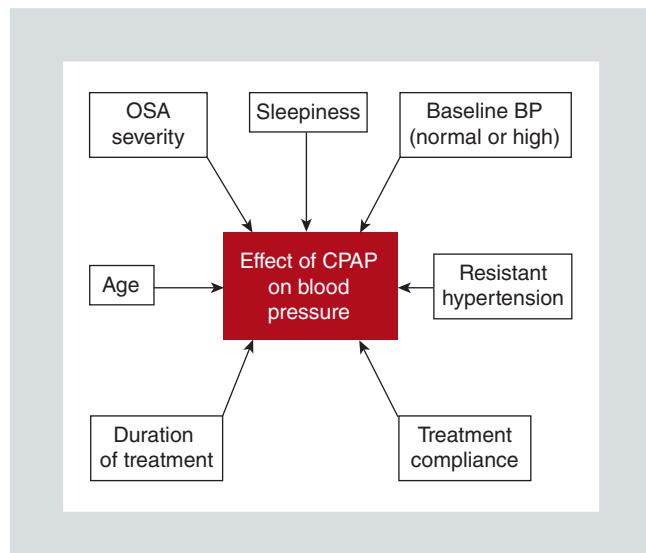
EFFECTS OF CONTINUOUS POSITIVE AIRWAY PRESSURE ON SYSTEMIC BLOOD PRESSURE

The relationship between OSA and systemic hypertension is complex, and very relevant for

FIGURE 1. Summary of meta-analyses on the effects of continuous positive airway pressure in patients with obstructive sleep apnoea. PubMed search was performed in July 2016. QoL: quality of life; APAP: automatic positive airway pressure.

the assessment of cardiovascular risk⁷. Several meta-analyses were published in the last decade on randomised controlled trials (RCT) assessing the effects of CPAP on blood pressure (BP). There are methodological differences, as some meta-analyses ($n = 7$) analysed studies reporting office BP and/or nocturnal and diurnal values obtained by ambulatory blood pressure monitoring (ABPM)⁸⁻¹⁴, while others ($n = 2$) only considered ABPM studies^{15,16}. Three studies examined the effects of CPAP in OSA patients with resistant hypertension¹⁷⁻¹⁹. More recently, a meta-analysis assessed the effects of CPAP withdrawal on BP²⁰.

There is agreement that CPAP treatment is associated with decreases in BP^{8,11,15}. On CPAP,


BP falls by a few mmHg, and additional drug treatment for hypertension is necessary to reach normal BP values in hypertensive patients^{21,22}. Variability in results can be explained by OSA severity, i.e. larger BP falls were usually seen in patients with high apnoea hypopnoea index and compliance to CPAP treatment; i.e. better results were obtained in patients using CPAP for at least four hours per night¹³. In addition, there was a trend for BP to decrease more in patients with higher baseline BP¹³, and the largest falls were observed in patients with poorly controlled hypertension despite pharmacological treatment, i.e. “resistant” hypertension¹⁷⁻¹⁹. Finally, results vary according to the technique used for BP measurement, and larger decreases in nocturnal than diurnal

BP values were found in studies using ABPM compared to studies based on daytime BP measurements^{10,14,16}. In general, the reduction in diastolic BP was more consistent compared to the decrease in systolic BP. In patients with minimally symptomatic OSA, CPAP decreased office diastolic BP only in patients who used CPAP for at least four hours/night¹²; whether such a decrease may be sufficient to recommend CPAP treatment in a population with low adherence to treatment remains a matter of debate. Withdrawal of CPAP for two weeks caused significant rebounds in systolic and diastolic BP, with an average difference between patients continuing and interrupting treatment of 5 mmHg in office and 8-9 mmHg in home systolic and diastolic BP²⁰.

Recent studies have highlighted two important new findings not yet analysed by available meta-analyses. First, systemic hypertension could be linked to respiratory events in REM sleep, possibly related to high sympathetic activity in this sleep stage²³⁻²⁵. Second, fixed CPAP was more effective than automatic CPAP in decreasing diastolic BP²⁶. In summary, the positive effect of CPAP on BP is evidence-based and confirmed by observational long-term longitudinal studies^{27,28}. Figure 2 summarises the most relevant clinical variables reported to modulate the BP response to CPAP treatment.

EFFECTS OF CONTINUOUS POSITIVE AIRWAY PRESSURE ON METABOLIC VARIABLES

A large group of meta-analyses assessed the effects of CPAP on energy metabolism in OSA

FIGURE 2. Summary of the different factors found to affect blood pressure changes in obstructive sleep apnoea after continuous positive airway pressure treatment.

BP: blood pressure; CPAP: continuous positive airway pressure; OSA: obstructive sleep apnoea.

patients. Intermittent hypoxia, sleep fragmentation, and obesity concur to cause or worsen insulin resistance, as shown by experimental and clinical studies²⁹. Moreover, a recent meta-analysis showed that CPAP treatment is associated with an increase in body weight³⁰, which may further contribute to insulin resistance in treated OSA patients. Decreased resting energy expenditure, in part explained by decreased sympathetic activation, has been recently demonstrated after CPAP treatment for three months³¹.

Meta-analyses examined the effects of CPAP on insulin resistance and other markers of glycemic control in non-diabetic (n = 5 studies) and diabetic (n = 4 studies) patients with OSA, respectively. CPAP improved insulin resistance assessed by the homeostatic model assessment (HOMA) index in four studies examining non-diabetic subjects³²⁻³⁵, while the

meta-analysis by Hecht et al.³⁶ reported non-significant changes. In diabetic patients, some meta-analyses assessed CPAP-associated changes in glycemic control by measuring glycosylated haemoglobin (HbA1c) levels. No significant effect of CPAP on HbA1c was reported by three studies³⁷⁻³⁹, but a small improvement in the HOMA index was found by two studies^{37,38}. These rather disappointing results could be the consequence of at least two factors. On the one hand, a prolonged duration of CPAP treatment, beyond the four hours considered as good compliance, may be necessary to positively affect glucose metabolism in OSA patients⁴⁰; on the other hand, obesity exerts a powerful effect, and diet, alone or associated with CPAP treatment, but not CPAP treatment alone, positively modified metabolism⁴¹. Furthermore, the effect of CPAP could be more evident in lean as compared to obese patients⁴². Finally, levels of glycemic control at baseline in diabetic patients may affect the post-CPAP results, as suggested by a comparison of two recently published randomised controlled studies^{43,44}.

Three meta-analyses have examined the effect of CPAP treatment on plasma lipids⁴⁵⁻⁴⁷. All of them found that total cholesterol decreased after CPAP treatment, while disagreement exists with regard to changes in low-density (LDL) or high-density lipoprotein (HDL) cholesterol and triglycerides levels. The decrease in total cholesterol was associated with good adherence to CPAP treatment, especially in young obese OSA patients⁴⁶. In children, lipid disturbances appeared to be associated with obesity rather than with OSA⁴⁸. Unfortunately, little information is available from the studies on dietary interventions or pharmacological treatment that could have been

started when the patients were first seen by the physicians suspecting or diagnosing OSA. Moreover, the mean changes in plasma lipids were small.

CPAP may also affect non-alcoholic fatty liver disease (NAFLD). Observational studies in children with NAFLD reported an association of OSA and severity of nocturnal hypoxemia with liver fibrosis and inflammatory hepatic markers, independent of obesity⁴⁹. Moreover, nocturnal hypoxemia was associated with altered gut permeability⁵⁰, suggesting an additional mechanism for worsening of liver function in OSA. No such studies are available in adults yet. Two meta-analyses^{51,52} showed a significant association of adult moderate-severe OSA with liver enzymes and biopsy-proved NAFLD, but did not include data on CPAP treatment. The only meta-analysis available showed decreased liver enzymes after CPAP treatment for at least three months⁵³.

Plasma leptin, a pleiotropic adipokine with multiple effects on metabolism, immunity, and ventilation, is increased in OSA, and appears to be strongly modulated by obesity and gender⁵⁴. Several studies assessed the effects of CPAP treatment, and the results of two recent meta-analyses agree on decreased leptin levels after CPAP^{55,56}. Overall, the studies analysed were small (< 500 patients included in meta-analyses), the change in leptin was small, and its clinical significance is still uncertain.

Negative results have also been reported by a meta-analysis on changes in adiponectin after CPAP⁵⁷, whereas insulin-like growth factor-1 (IGF-1) significantly increased after

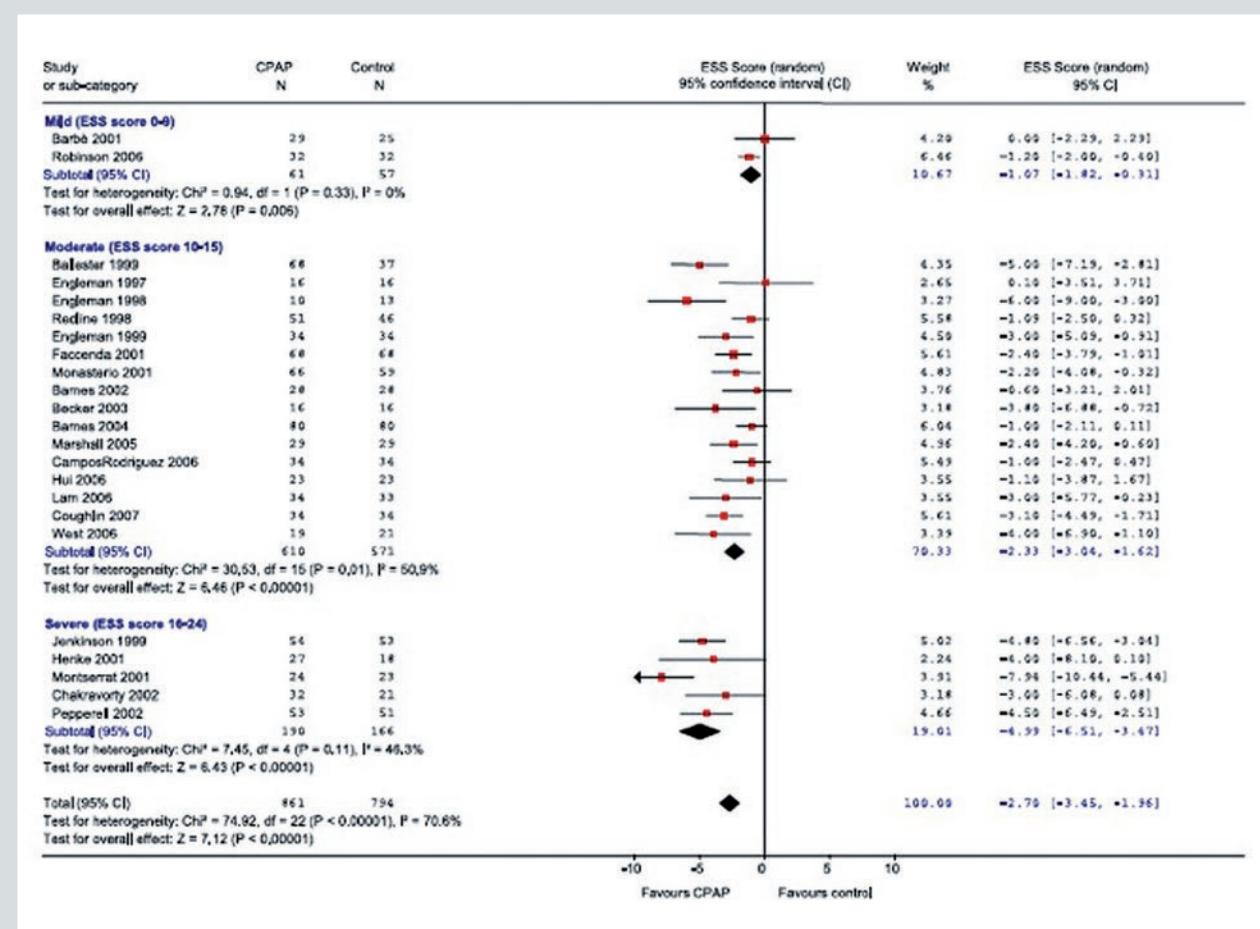
treatment⁵⁸. Overall, the evidence available on leptin, adiponectin, and IGF-1 does not allow a definitive conclusion on the effects of CPAP treatment.

EFFECTS OF CONTINUOUS POSITIVE AIRWAY PRESSURE ON INFLAMMATORY MARKERS

Inflammation is a hallmark of OSA, obesity, and atherosclerosis and inflammatory markers are increased in patients with OSA^{59,60}. The effects of CPAP treatment have been explored by many studies. Two meta-analyses summarised the results of the effects of CPAP on tumour necrosis factor-alpha (TNF- α), interleukin-6, and C-reactive protein. Although there was borderline significance for a positive effect of CPAP, the authors underlined the low number of randomised controlled studies and the high heterogeneity of the available studies^{61,62}. A positive effect of CPAP treatment on C-reactive protein was also reported by two additional meta-analyses that remarked that available studies were not of high quality^{63,64}. The systematic review by Jullian-Desayes et al.⁶⁵ reported negative findings for inflammatory markers when only sham-CPAP controlled studies were examined. Therefore, there is some evidence that CPAP may decrease C-reactive protein levels, while further studies are clearly needed for other inflammatory markers.

EFFECTS OF CONTINUOUS POSITIVE AIRWAY PRESSURE ON SLEEPINESS

Continuous positive airway pressure decreases subjective and objective sleepiness, measured


by the Epworth Sleepiness Scale (ESS) and the multiple sleep latency test (MSLT), respectively. The largest effects were observed in patients with severe OSA and high degree of sleepiness⁶⁶. Other studies (one meta-analysis and one systematic review) confirmed the positive effects of CPAP on subjective daytime sleepiness assessed by ESS (Fig. 3), but found improvement only in the maintenance of wakefulness test (MWT), without significant changes in MSLT after CPAP^{67,68}. The effect of real CPAP treatment on subjective sleepiness was larger than that of placebo, with this explaining 29% of the benefit referred by patients with good compliance to treatment⁶⁹. Therefore, although patient expectations may play some role, there is evidence that CPAP does reduce sleepiness.

EFFECTS OF CONTINUOUS POSITIVE AIRWAY PRESSURE ON DEPRESSION AND ANXIETY

There are two meta-analyses on the effects of CPAP treatment on depression. Positive effects were reported in the two studies on patients with both OSA and depression, while a high heterogeneity was found for other studies⁷⁰. Patient expectation may in part explain the positive effects of CPAP on depression and anxiety⁷¹.

EFFECTS OF CONTINUOUS POSITIVE AIRWAY PRESSURE ON CAR AND OCCUPATIONAL ACCIDENTS

Two meta-analyses reported a highly protective effect of CPAP treatment on car accidents,

FIGURE 3. Efficacy of continuous positive airway pressure on excessive daytime sleepiness assessed with the Epworth Sleepiness Scale in obstructive sleep apnoea patients. The effect was largest in patients with severe excessive daytime sleepiness (reproduced with permission from McDaid *et al.*⁶⁹).

CPAP: continuous positive airway pressure; ESS: Epworth Sleepiness Scale.

near-miss accidents, and performance at driving simulators in OSA patients^{72,73}. The positive effects of treatment on simulated driving were evident already in the first week of CPAP treatment⁷².

More recently, Garbarino *et al.*⁷⁴ have reported a high risk of occupational accidents in patients with untreated OSA, not only in commercial vehicle or bus drivers, but also in white and blue collar workers. Unfortunately,

no data are available yet on the effects of CPAP treatment on occupational accidents.

EFFECTS OF CONTINUOUS POSITIVE AIRWAY PRESSURE ON COGNITIVE DYSFUNCTION

In recent years the effects of CPAP on cognitive function have been analysed. A detailed analysis of the effects of OSA on the different

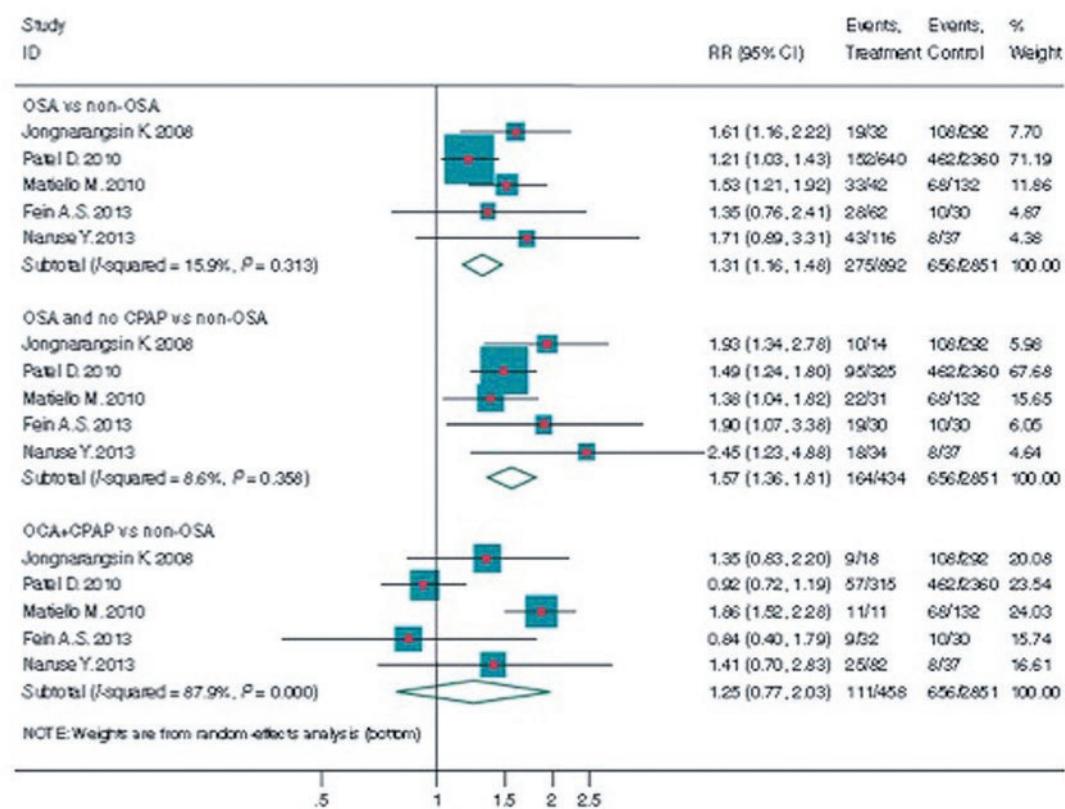
domains of cognitive function is beyond the scope of this article, and the reader is referred to excellent recent reviews on this topic^{75,76}. The only meta-analysis on the effects of CPAP concluded that only vigilance showed significant improvement after treatment⁷⁷. Interestingly, a recent systematic review reported positive effects of CPAP only in subjects with excessive daytime sleepiness⁷⁸, but more systematic and controlled studies are needed to draw conclusions on this important topic since the studies examined relatively small samples and follow-up was up to six months.

EFFECTS OF CONTINUOUS POSITIVE AIRWAY PRESSURE ON QUALITY OF LIFE

There are only two meta-analyses on quality of life in CPAP-treated OSA patients. One concluded that there was improved quality of life, sleepiness, and cognitive function after CPAP treatment⁷⁹, the other one underlined that general quality of life scores were not significantly changed after CPAP, but physical function, body pain, energy vitality, and physical component summary of the SF-36 tool increased after CPAP treatment⁸⁰.

EFFECTS OF CONTINUOUS POSITIVE AIRWAY PRESSURE ON ENDOTHELIAL CELL FUNCTION AND VASCULAR STIFFNESS

Obstructive sleep apnoea is associated with reduced endothelial cell function, decreased


flow-mediated dilation, and increased arterial stiffness, as measured by carotid-femoral pulse wave velocity, or Augmentation Index (AI)⁸¹. Two recent meta-analyses reported evidence for a positive effect of CPAP treatment in restoring endothelial function^{82,83}. However only flow-mediated dilation improved, while nitroglycerin-induced dilation was unchanged after CPAP treatment⁸².

The results of studies on vascular stiffness were discordant. The meta-analysis by Xu et al.⁸² reported no change in arterial stiffness after CPAP, while that by Lin et al.⁸⁴ found evidence for improved arterial stiffness only in hypertensive patients. Whether such positive changes are associated with decreased cardiovascular risk is still unknown.

EFFECTS OF CONTINUOUS POSITIVE AIRWAY PRESSURE ON VENTRICULAR ARRHYTHMIAS AND ATRIAL FIBRILLATION

The only systematic review on the effects of CPAP treatment on occurrence of ventricular arrhythmias concluded that the available studies were too few and heterogeneous so that meta-analysis could not be performed⁸⁵.

More knowledge has been gathered on atrial fibrillation in OSA patients. OSA is a major predictor of relapse of atrial fibrillation after catheter ablation⁸⁶ or coronary artery bypass grafting⁸⁷. The available meta-analyses indicate a clear protective effect of CPAP treatment, since the rate of relapse in patients on CPAP treatment was similar to that of patients without OSA^{88,89} (Fig. 4).

FIGURE 4. Efficacy of catheter ablation of atrial fibrillation in patients with obstructive sleep apnoea with and without continuous positive airway pressure treatment. Recurrence of atrial fibrillation was more frequent in obstructive sleep apnoea than in non-obstructive sleep apnoea patients (upper panel), and in untreated obstructive sleep apnoea compared to non-obstructive sleep apnoea patients (middle panel). Continuous positive airway pressure treatment normalized the risk of recurrence in obstructive sleep apnoea patients (lower panel) (*reproduced with permission from Li et al.⁸⁸*).

CPAP: continuous positive airway pressure; OSA: obstructive sleep apnoea.

CONTINUOUS POSITIVE AIRWAY PRESSURE AND CARDIOVASCULAR OUTCOMES

Stable coronary artery disease

Observational studies suggest that untreated OSA may worsen prognosis in patients with coronary artery disease^{90,91}, and CPAP treatment may prevent recurrent infarction or need for revascularisation in patients with myocardial infarction and OSA⁹². A recent study

from the Sleep and Stent Study, a prospective multicenter registry, reported that patients with OSA and coronary artery disease showed an increased risk for major adverse cardiac and cerebrovascular disease after percutaneous coronary intervention⁹³. Randomised controlled studies have been designed to address the important clinical question of the impact of CPAP treatment on cardiovascular outcomes. Two of them, the Treatment in Coronary Artery Disease and Sleep Apnea (RICCADSA)⁹⁴ and the Continuous Positive Airway Pressure

Treatment of Obstructive Sleep Apnea to Prevent Cardiovascular Disease (SAVE)⁹⁵ studies, reported that CPAP did not protect against cardiovascular events. Both the RICCADSA and SAVE studies examined long-term cardiovascular outcomes in patients with coronary artery disease and OSA without sleepiness, by randomising patients to receive usual care or usual care and CPAP. The negative results raised some questions. For example, adherence to CPAP treatment was only 3.3 hours in the SAVE study⁹⁵, while use of CPAP for at least four hours per night was associated with significant risk reduction in secondary data analysis in the RICCADSA study⁹⁴. Therefore, it is possible that a higher adherence to treatment would be necessary to show positive effects of CPAP on cardiovascular risk.

Acute coronary syndromes

After acute myocardial infarction, occurrence of sleep disordered breathing was associated with a high myocardial workload, estimated as the product of systolic blood pressure and heart rate⁹⁶. An observational study on short-term prognosis after an acute coronary syndrome event found that OSA patients showed higher troponin levels and a longer stay in the coronary care unit compared to patients without OSA⁹⁷. In addition, OSA severity assessed by the apnoea hypopnea index was associated with increased number of diseased vessels⁹⁷. The on-going Impact of continuous positive airway pressure on patients with Acute Coronary Syndrome and nonsleepy OSA (ISAACC, NCT01335087) study has enrolled patients with acute coronary syndrome and OSA without excessive daytime sleepiness, but results are not available yet⁹⁸.

Stroke

Only recently, a meta-analysis was published focussing on the effects of CPAP on the risk for stroke⁹⁹. The results analysed were discordant, since a protective effect of CPAP treatment was found in cohort studies, but not in RCTs or studies using administrative data. The protective effect of CPAP against stroke was larger than for cardiac events.

Chronic heart failure

A recent meta-analysis exploring the effects of CPAP on all-cause and cardiovascular mortality in patients with chronic heart failure (CHF) did not show any significant change¹⁰⁰. The topic of sleep-disordered breathing in CHF patients is complicated by the frequent occurrence of both central and obstructive events, and is currently being re-examined after the negative results of the Adaptive Servo-Ventilation for Central Sleep Apnea in Systolic Heart Failure (SERVE_HF) trial showing that adaptive servo-ventilation in CHF patients is associated with increased mortality in patients with low ejection fraction¹⁰¹. The results of the on-going randomised multicenter trial ADVENT-HF, (Effect of ASV on Survival and Hospital Admissions in HF, NCT01128816), will help define the therapeutic strategy to be used in CHF patients with sleep apnoea^{102,103}.

CONCLUSIONS

Compared to the state of the art in 1997, evidence-based effects of CPAP treatment have been demonstrated in the last two decades by

TABLE 1. Summary of the evidence on the effects of CPAP treatment

Outcomes	Evidence
All-cause and cardiovascular mortality	Moderate
Blood pressure	Strong
Insulin resistance	Weak-moderate
Plasma lipids	No evidence, except for total cholesterol (weak)
Liver damage	Weak/no evidence
Leptin, adiponectin, IGF-1	Weak/no evidence
TNF-alpha, IL-6	Weak
C-reactive protein	Moderate
Sleepiness	Strong
Car/occupational accidents	Strong
Cognitive dysfunction	Weak/no evidence
Quality of life	Weak/no evidence
Endothelial function	Strong
Arterial stiffness	Weak/no evidence
Recurrence of atrial fibrillation	Strong
Cardiovascular outcomes in CAD	No evidence

CAD: coronary artery disease; IGF: insulin like growth factor; IL: interleukin; TNF: tumour necrosis factor.

randomised controlled studies and meta-analyses. Table 1 summarises the current level of evidence regarding CPAP treatment, which appears strong for the effects on blood pressure, sleepiness, car accidents, and prevention of recurrent atrial fibrillation. All the other items examined show lower levels of evidence. On-going studies will help clarify the long-term effects of CPAP treatment, especially on cardiovascular outcomes, and ascertain whether CPAP treatment is beneficial in subpopulations of patients at high risk.

There is an apparent discrepancy between the results of meta-analyses on general and

cardiovascular mortality on the one hand, and the recent data from RCTs on cardiovascular outcomes after CPAP treatment. Both cohort studies and RCTs have limitations, the former because of low level of evidence due to lack of randomisation, the latter because of the poor level of compliance to CPAP treatment.

Adherence to CPAP is known to be unsatisfactory in asymptomatic patients, who account for about half of the patients with OSA according to current estimates¹⁰⁴. CPAP is one of the few medical treatments with effective measurement of the “dose” actually taken by the patient. Currently, a minimum of four hours per night for at least 70% of the nights is used as a threshold of compliance¹⁰⁵. In future studies, the effects of CPAP should be assessed by using hours of compliance as a dose treatment variable to quantitatively weigh the magnitude of therapeutic effect.

Identification of subgroups of patients likely to benefit most from CPAP treatment is important in order to optimise the therapeutic strategy in the long term. More data are needed in elderly patients and women, as most studies to date have examined male middle-aged patients, and the features of OSA appear age- and gender-dependent. Overall, the data show that CPAP is an effective treatment, although to date there is no evidence that it positively affects cardiovascular risk.

CONFLICT OF INTEREST

Dr. Bonsignore has nothing to disclose, Dr. Marrone has nothing to disclose, Dr. McNicholas has nothing to disclose.

REFERENCES

- Wright J, Johns R, Watt I, Melville A, Sheldon T. Health effects of obstructive sleep apnoea and the effectiveness of continuous positive airways pressure: a systematic review of the research evidence. *BMJ*. 1997;314:851-60.
- Wang X, Ouyang Y, Wang Z, Zhao G, Liu L, Bi Y. Obstructive sleep apnea and risk of cardio-vascular disease and all-cause mortality: a meta-analysis of prospective cohort studies. *Int J Cardiol*. 2013;169:207-14.
- Xie W, Zheng F, Song X. Obstructive sleep apnea and serious adverse outcomes in patients with cardiovascular or cerebrovascular disease: a PRISMA-compliant systematic review and meta-analysis. *Medicine (Baltimore)*. 2014;93:e336.
- Guo J, Sun Y, Xue LJ, et al. Effect of CPAP therapy on cardiovascular events and mortality in patients with obstructive sleep apnea: a meta-analysis. *Sleep Breath* 2016;20:965-74.
- Ge X, Han F, Huang Y, et al. Is obstructive sleep apnea associated with cardiovascular and all-cause mortality? *PLoS One*. 2013;8:e69432.
- Fu Y, Xia Y, Yi H, Xu H, Guan J, Yin S. Meta-analysis of all-cause and cardiovascular mortality in obstructive sleep apnea with or without continuous positive airway pressure treatment. *Sleep Breath* 2016. [Epub ahead of print].
- Torres G, Sánchez-de-la-Torre M, Barbé F. Relationship between OSA and hypertension. *Chest*. 2015;148:824-32.
- Bazzano LA, Khan Z, Reynolds K, He J. Effect of nocturnal nasal continuous positive airway pressure on blood pressure in obstructive sleep apnea. *Hypertension*. 2007;50:417-23.
- Alajmi M, Mulgrew AT, Fox J, et al. Impact of continuous positive airway pressure therapy on blood pressure in patients with obstructive sleep apnea hypopnea: a meta-analysis of randomized controlled trials. *Lung*. 2007;185:67-72.
- Fava C, Dorigoni S, Dalle Vedove F, et al. Effect of CPAP on blood pressure in patients with OSA/hypopnea a systematic review and meta-analysis. *Chest*. 2014;145:762-71.
- Schein AS, Kerkhoff AC, Coronel CC, Plentz RD, Sbruzzi G. Continuous positive airway pressure reduces blood pressure in patients with obstructive sleep apnea: a systematic review and meta-analysis with 1000 patients. *J Hypertens*. 2014;32:1762-73.
- Bratton DJ, Stradling JR, Barbé F, Kohler M. Effect of CPAP on blood pressure in patients with minimally symptomatic obstructive sleep apnoea: a meta-analysis using individual patient data from four randomised controlled trials. *Thorax*. 2014;69:1128-35.
- Montesi SB, Edwards BA, Malhotra A, Bakker JP. The effect of continuous positive airway pressure treatment on blood pressure: a systematic review and meta-analysis of randomized controlled trials. *J Clin Sleep Med*. 2012;8:587-96.
- Sun Y, Huang ZY, Sun QR, Qiu LP, Zhou TT, Zhou GH. CPAP therapy reduces blood pressure for patients with obstructive sleep apnoea: an update meta-analysis of randomized clinical trials. *Acta Cardiol*. 2016;71:275-80.
- Haentjens P, Van Meerhaeghe A, Moscariello A, et al. The impact of continuous positive airway pressure on blood pressure in patients with obstructive sleep apnea syndrome: evidence from a meta-analysis of placebo-controlled randomized trials. *Arch Intern Med*. 2007;167:757-64.
- Hu X, Fan J, Chen S, Yin Y, Zrenner B. The role of continuous positive airway pressure in blood pressure control for patients with obstructive sleep apnea and hypertension: a meta-analysis of randomized controlled trials. *J Clin Hypertens*. 2015;17:215-22.
- Iftikhar IH, Valentine CW, Bittencourt LR, et al. Effects of continuous positive airway pressure on blood pressure in patients with resistant hypertension and obstructive sleep apnea: a meta-analysis. *J Hypertens*. 2014;32:2341-50.
- Varounis C, Katsi V, Kallikazaros IE, et al. Effect of CPAP on blood pressure in patients with obstructive sleep apnea and resistant hypertension: a systematic review and meta-analysis. *Int J Cardiol*. 2014;175:195-8.
- Liu L, Cao Q, Guo Z, Dai Q. Continuous positive airway pressure in patients with obstructive sleep apnea and resistant hypertension: a meta-analysis of randomized controlled trials. *J Clin Hypertens* 2016; 18: 153-158.
- Schwarz EI, Schlatzer C, Rossi VA, Stradling JR, Kohler M. Effect of CPAP-withdrawal on blood pressure in OSA: data from three randomized-controlled trials. *Chest* 2016. [Epub ahead of print].
- Pépin JL, Tamisier R, Barone-Rochette G, Launois SH, Lévy P, Baguet JP. Comparison of continuous positive airway pressure and valsartan in hypertensive patients with sleep apnea. *Am J Respir Crit Care Med*. 2010;182:954-60.
- Thunström E, Manhem K, Rosengren A, Peker Y. Blood pressure response to losartan and continuous positive airway pressure in hypertension and obstructive sleep apnea. *Am J Respir Crit Care Med*. 2016;193:310-20.
- Mokhlesi B, Finn LA, Hagen EW, et al. Obstructive sleep apnea during REM sleep and hypertension. results of the Wisconsin Sleep Cohort. *Am J Respir Crit Care Med*. 2014;190:1158-67.
- Mokhlesi B, Hagen EW, Finn LA, Hla KM, Carter JR, Peppard PE. Obstructive sleep apnoea during REM sleep and incident non-dipping of nocturnal blood pressure: a longitudinal analysis of the Wisconsin Sleep Cohort. *Thorax*. 2015;70:1062-9.
- Appleton SL, Vakulin A, Martin SA, et al. Hypertension is associated with undiagnosed OSA during rapid eye movement sleep. *Chest*. 2016;150:495-505.
- Pépin JL, Tamisier R, Baguet JP, et al. Fixed-pressure CPAP versus auto-adjusting CPAP: comparison of efficacy on blood pressure in obstructive sleep apnoea, a randomised clinical trial. *Thorax*. 2016;71:726-33.
- Marin JM, Agusti A, Villar I, et al. Association between treated and untreated obstructive sleep apnea and risk of hypertension. *JAMA*. 2012;307:2169-76.
- Barbé F, Durán-Cantolla J, Sánchez-de-la-Torre M, et al.; Spanish Sleep And Breathing Network. Effect of continuous positive airway pressure on the incidence of hypertension and cardiovascular events in nonsleepy patients with obstructive sleep apnea: a randomized controlled trial. *JAMA*. 2012;307:2161-8.
- Bonsignore MR, McNicholas WT, Montserrat JM, Eckel J. The adipose tissue in obesity and obstructive sleep apnea. *Eur Respir J*. 2012;39:746-67.
- Drager LF, Brunoni AR, Jenner R, Lorenzi-Filho G, Benseñor IM, Lotufo PA. Effects of CPAP on body weight in patients with obstructive sleep apnoea: a meta-analysis of randomised trials. *Thorax*. 2015;70:258-64.
- Tachikawa R, Ikeda K, Minami T, et al. Changes in energy metabolism after continuous positive airway pressure for obstructive sleep apnea. *Am J Respir Crit Care Med*. 2016;194:729-38.
- Iftikhar IH, Khan MF, Das A, Magalang UJ. Meta-analysis: continuous positive airway pressure improves insulin resistance in patients with sleep apnea without diabetes. *Ann Am Thorac Soc*. 2013;10:115-20.
- Iftikhar IH, Hoyos CM, Phillips CL, Magalang UJ. Meta-analyses of the association of sleep apnea with insulin resistance, and the effects of CPAP on HOMA-IR, adiponectin, and visceral adipose fat. *J Clin Sleep Med*. 2015; 711:475-85.
- Yang D, Liu Z, Yang H. The impact of effective continuous positive airway pressure on homeostasis model assessment insulin resistance in non-diabetic patients with moderate to severe obstructive sleep apnea. *Diabetes Metab Res Rev*. 2012;28:499-504.
- Yang D, Liu Z, Yang H, Luo Q. Effects of continuous positive airway pressure on glycemic control and insulin resistance in patients with obstructive sleep apnea: a meta-analysis. *Sleep Breath*. 2013;17:33-8.
- Hecht L, Möhler R, Meyer G. Effects of CPAP-respiration on markers of glucose metabolism in patients with obstructive sleep apnoea syndrome: a systematic review and meta-analysis. *Ger Med Sci*. 2011;9:Doc20.
- Iftikhar IH, Blankfield RP. Effect of continuous positive airway pressure on hemoglobin A(1c) in patients with obstructive sleep apnea: a systematic review and meta-analysis. *Lung*. 2012;190:605-11.
- Chen L, Pei JH, Chen HM. Effects of continuous positive airway pressure treatment on glycaemic control and insulin sensitivity in patients with obstructive sleep apnoea and type 2 diabetes: a meta-analysis. *Arch Med Sci*. 2014;10:637-42.
- Feng Y, Zhang Z, Dong ZZ. Effects of continuous positive airway pressure therapy on glycaemic control, insulin sensitivity and body mass index in patients with obstructive sleep apnoea and type 2 diabetes: a systematic review and meta-analysis. *NPJ Prim Care Respir Med*. 2015;25:15005.

40. Pamidi S, Wroblewski K, Stepien M, et al. Eight hours of nightly continuous positive airway pressure treatment of obstructive sleep apnea improves glucose metabolism in patients with prediabetes. A randomized controlled trial. *Am J Respir Crit Care Med.* 2015;192:96-105.

41. Chirinos JA, Gurubhagavatula I, Teff K, et al. CPAP, weight loss, or both for obstructive sleep apnea. *N Engl J Med.* 2014;370:2265-75.

42. Harsch IA, Schahin SP, Radespiel-Tröger M, et al. Continuous positive airway pressure treatment rapidly improves insulin sensitivity in patients with obstructive sleep apnea syndrome. *Am J Respir Crit Care Med.* 2004;169:156-62.

43. Martínez-Cerón E, Barquiel B, Bezios AM, et al. Effect of continuous positive airway pressure on glycemic control in patients with obstructive sleep apnea and type 2 diabetes. A randomized clinical trial. *Am J Respir Crit Care Med.* 2016;194:476-85.

44. Shaw JE, Punjabi NM, Naughton MT, et al. The effect of treatment of obstructive sleep apnea on glycemic control in type 2 diabetes. *Am J Respir Crit Care Med.* 2016;194:486-92.

45. Nadeem R, Singh M, Nida M, et al. Effect of CPAP treatment for obstructive sleep apnea hypopnea syndrome on lipid profile: a meta-regression analysis. *J Clin Sleep Med.* 2014;10:1295-302.

46. Xu H, Yi H, Guan J, Yin S. Effect of continuous positive airway pressure on lipid profile in patients with obstructive sleep apnea syndrome: a meta-analysis of randomized controlled trials. *Atherosclerosis.* 2014;234:446-53.

47. Lin MT, Lin HH, Lee PL, et al. Beneficial effect of continuous positive airway pressure on lipid profiles in obstructive sleep apnea: a meta-analysis. *Sleep Breath.* 2015;19:809-17.

48. Marrone O, Bonsignore MR. The puzzle of metabolic effects of obstructive sleep apnoea in children. *Eur Respir J.* 2016;47:1050-3.

49. Nobili V, Cutrera R, Liccardo D, et al. Obstructive sleep apnea syndrome affects liver histology and inflammatory cell activation in pediatric non-alcoholic fatty liver disease, regardless of obesity/insulin resistance. *Am J Respir Crit Care Med.* 2014;189:66-76.

50. Nobili V, Alisi A, Cutrera R, et al. Altered gut-liver axis and hepatic adiponectin expression in OSAS: novel mediators of liver injury in paediatric non-alcoholic fatty liver. *Thorax.* 2015;70:769-81.

51. Musso G, Cassader M, Olivetti C, Rosina F, Carbone G, Gambino R. Association of obstructive sleep apnoea with the presence and severity of non-alcoholic fatty liver disease. A systematic review and meta-analysis. *Obes Rev.* 2013;14:417-31.

52. Sookoian S, Pirola CJ. Obstructive sleep apnea is associated with fatty liver and abnormal liver enzymes: a meta-analysis. *Obes Surg.* 2013;23:1815-25.

53. Chen LD, Lin L, Zhang LJ, et al. Effect of continuous positive airway pressure on liver enzymes in obstructive sleep apnea: A meta-analysis: CPAP on liver enzymes. *Clin Respir J.* 2016. [Epub ahead of print].

54. Arnardottir ES, Maislin G, Jackson N, et al. The role of obesity, different fat compartments and sleep apnea severity in circulating leptin levels: the Icelandic Sleep Apnea Cohort study. *Int J Obes.* 2013;37:835-42.

55. Chen X, Niu X, Xiao Y, Dong J, Lu M, Kong W. Effect of continuous positive airway pressure on leptin levels in patients with obstructive sleep apnea: a meta-analysis. *Otolaryngol Head Neck Surg.* 2015;152:610-18.

56. Zhang P, Liu J, Long S, Xie X, Guo Y. Association between continuous positive airway pressure and changes in serum leptin in patients with obstructive sleep apnoea: a meta-analysis. *Sleep Breath.* 2014;18:695-702.

57. Chen LD, Liu JN, Lin L, et al. Effect of continuous positive airway pressure on adiponectin in patients with obstructive sleep apnea: a meta-analysis. *PLoS One.* 2015;10:e0136837.

58. Chen LD, Lin L, Huang JF, Chen X, Xu QZ, Liu JN. Effect of continuous positive airway pressure on insulin growth factor-1 in patients with obstructive sleep apnea: a meta-analysis. *Growth Horm IGF Res.* 2015;25:75-9.

59. Nadeem R, Molnar J, Madbouly EM, et al. Serum inflammatory markers in obstructive sleep apnea: a meta-analysis. *J Clin Sleep Med.* 2013;9:1003-12.

60. Wang J, Yu W, Gao M, et al. Impact of obstructive sleep apnea syndrome on endothelial function, arterial stiffening, and serum inflammatory markers: an updated meta-analysis and metaregression of 18 studies. *J Am Heart Assoc.* 2015;4:e002454.

61. Baessler A, Nadeem R, Harvey M, et al. Treatment for sleep apnea by continuous positive airway pressure improves levels of inflammatory markers - a meta-analysis. *J Inflamm (Lond).* 2013;10:13.

62. Xie X, Pan L, Ren D, Du C, Guo Y. Effects of continuous positive airway pressure therapy on systemic inflammation in obstructive sleep apnea: a meta-analysis. *Sleep Med.* 2013;14:1139-50.

63. Friedman M, Samuelson CG, Hamilton C, et al. Effect of continuous positive airway pressure on C-reactive protein levels in sleep apnea: a meta-analysis. *Otolaryngol Head Neck Surg.* 2012;147:423-33.

64. Guo Y, Pan L, Ren D, Xie X. Impact of continuous positive airway pressure on C-reactive protein in patients with obstructive sleep apnea: a meta-analysis. *Sleep Breath.* 2013;17:495-503.

65. Julian-Desayes I, Joyeux-Faure M, Tamisier R, et al. Impact of obstructive sleep apnea treatment by continuous positive airway pressure on cardiometabolic biomarkers: a systematic review from sham CPAP randomized controlled trials. *Sleep Med Rev.* 2015;21:23-38.

66. Patel SR, White DP, Malhotra A, Stanchina ML, Ayas NT. Continuous positive airway pressure therapy for treating sleepiness in a diverse population with obstructive sleep apnea: results of a meta-analysis. *Arch Intern Med.* 2003;163:565-71.

67. Marshall NS, Barnes M, Travier N, et al. Continuous positive airway pressure reduces daytime sleepiness in mild to moderate obstructive sleep apnoea: a meta-analysis. *Thorax.* 2006;61:430-4.

68. McDaid C, Durée KH, Griffin SC, et al. A systematic review of continuous positive airway pressure for obstructive sleep apnoea-hypopnoea syndrome. *Sleep Med Rev.* 2009;13:427-36.

69. Crawford MR, Bartlett DJ, Coughlin SR, et al. The effect of continuous positive airway pressure usage on sleepiness in obstructive sleep apnoea: real effects or expectation of benefit? *Thorax.* 2012;67:920-4.

70. Povitz M, Bolo CE, Heitman SJ, Tsai WH, Wang J, James MT. Effect of treatment of obstructive sleep apnea on depressive symptoms: systematic review and meta-analysis. *PLoS Med.* 2014;11:e1001762.

71. Gupta MA, Simpson FC, Lyons DC. The effect of treating obstructive sleep apnea with positive airway pressure on depression and other subjective symptoms: a systematic review and meta-analysis. *Sleep Med Rev.* 2016;28:55-68.

72. Tregear S, Reston J, Schoelles K, Phillips B. Continuous positive airway pressure reduces risk of motor vehicle crash among drivers with obstructive sleep apnea: systematic review and meta-analysis. *Sleep.* 2010;33:1373-80.

73. Antonopoulos CN, Sergentanis TN, Daskalopoulou SS, Petridou ET. Nasal continuous positive airway pressure (nCPAP) treatment for obstructive sleep apnea, road traffic accidents and driving simulator performance: a meta-analysis. *Sleep Med Rev.* 2011;15:301-10.

74. Garbarino S, Guglielmi O, Sanna A, Mancardi GL, Magnavita N. Risk of occupational accidents in workers with obstructive sleep apnea: Systematic review and meta-analysis. *Sleep.* 2016;39:1211-18.

75. Bucks RS, Olaithe M, Eastwood P. Neurocognitive function in obstructive sleep apnoea: a meta-review. *Respirology.* 2013;18:61-70.

76. Stranks EK, Crowe SF. The cognitive effects of obstructive sleep apnea: an updated meta-analysis. *Arch Clin Neuropsychol.* 2016;31:186-93.

77. Pan YY, Deng Y, Xu X, Liu YP, Liu HG. Effects of continuous positive airway pressure on cognitive deficits in middle-aged patients with obstructive sleep apnea syndrome: a meta-analysis of randomized controlled trials. *Chin Med J.* 2015;128:2365-73.

78. Zhou J, Camacho M, Tang X, Kushida CA. A review of neurocognitive function and obstructive sleep apnea with or without daytime sleepiness. *Sleep Med.* 2016;23:99-108.

79. Giles TL, Lasserson TJ, Smith BH, White J, Wright J, Cates CJ. Continuous positive airways pressure for obstructive sleep apnoea in adults. *Cochrane Database Syst Rev.* 2006;CD001106.

80. Jing J, Huang T, Cui W, Shen H. Effect on quality of life of continuous positive airway pressure in patients with obstructive sleep apnea syndrome: a meta-analysis. *Lung.* 2008;186:131-244.

81. Wang J, Yu W, Gao M, et al. Impact of obstructive sleep apnea syndrome on endothelial function, arterial stiffening, and serum inflammatory markers: an updated meta-analysis and metaregression of 18 studies. *J Am Heart Assoc* 2015;4.

82. Xu H, Wang Y, Guan J, Yi H, Yin S. Effect of CPAP on endothelial function in subjects with obstructive sleep apne: a meta-analysis. *Respir Care*. 2015; 60:749-55.

83. Schwarz El, Puhan MA, Schlater C, Stradling JR, Kohler M. Effect of CPAP therapy on endothelial function in obstructive sleep apnea. A systematic review and meta-analysis. *Respirology*. 2015;20:889-95.

84. Lin X, Chen G, Qi J, Chen X, Zhao J. Effects of continuous positive airway pressure on arterial stiffness in patients with obstructive sleep apnea and hypertension. A meta-analysis. *Eur Arch Otorhinolaryngol*. 2016;273: 4081-8.

85. Raghuram A, Clay R, Kumbam A, Tereshchenko LG, Khan A. A systematic review of the association between obstructive sleep apnea and ventricular arrhythmias. *J Clin Sleep Med*. 2014;10:1155-60.

86. Ng CY, Liu T, Shehata M, Stevens S, Chugh SS, Wang X. Meta-analysis of obstructive sleep apnea as predictor of atrial fibrillation recurrence after catheter ablation. *Am J Cardiol* 2011;108:47-51.

87. Qaddoura A, Kabali C, Drew D, et al. Obstructive sleep apnea as a predictor of atrial fibrillation after coronary artery bypass grafting: a systematic review and meta-analysis. *Can J Cardiol*. 2014;30:1516-22.

88. Li L, Wang ZW, Li J, et al. Efficacy of catheter ablation of atrial fibrillation in patients with obstructive sleep apnoea with and without continuous positive airway pressure treatment: a meta-analysis of observational studies. *Europace*. 2014;16:1309-14.

89. Qureshi WT, Nasir UB, Alqalyoobi S, et al. Meta-analysis of continuous positive airway pressure as a therapy of atrial fibrillation in obstructive sleep apnea. *Am J Cardiol*. 2015;116:1767-73.

90. Lee CH, Khoo SM, Chan MY, et al. Severe obstructive sleep apnea and outcomes following myocardial infarction. *J Clin Sleep Med*. 2011;7:616-21.

91. Liu B, Guo R, Zhou S, Xie S, Wang K, Xu Y. Effects of obstructive sleep apnea on cardiac function and clinical outcomes in Chinese patients with ST-elevation myocardial infarction. *Scientific World Journal*. 2014;2014: 908582.

92. Garcia-Rio F, Alonso-Fernández A, Armada E, et al. CPAP effect on recurrent episodes in patients with sleep apnea and myocardial infarction. *Int J Cardiol*. 2013;168:1328-35.

93. Lee CH, Sethi R, Li R, et al. Obstructive sleep apnea and cardiovascular events after percutaneous coronary intervention. *Circulation*. 2016;133: 2008-17.

94. Peker Y, Glantz H, Eulenburg C, Wegscheider K, Herlitz J, Thunström E. Effect of positive airway pressure on cardiovascular outcomes in coronary artery disease patients with nonsleepy obstructive sleep apnea. The RICCADSa randomized controlled trial. *Am J Respir Crit Care Med*. 2016;194:613-20.

95. McEvoy RD, Antic NA, Heeley E, et al.; SAVE Investigators and Coordinators. CPAP for prevention of cardiovascular events in obstructive sleep apnea. *N Engl J Med*. 2016;375:919-31.

96. Hetzenrecker A, Buchner S, Greimel T, et al. Cardiac workload in patients with sleep-disordered breathing early after acute myocardial infarction. *Chest*. 2013;143:1294-301.

97. Barbé F, Sánchez-de-la-Torre A, Abad J, et al.; Spanish Sleep Network. Effect of obstructive sleep apnoea on severity and short-term prognosis of acute coronary syndrome. *Eur Respir J*. 2015;45:419-27.

98. Esquinas C, Sánchez-de-la Torre M, Aldomá A, et al.; Spanish Sleep Network. Rationale and methodology of the impact of continuous positive airway pressure on patients with ACS and nonsleepy OSA: the ISAACC Trial. *Clin Cardiol*. 2013;36:495-501.

99. Kim Y, Koo YS, Lee HY, Lee SY. Can continuous positive airway pressure reduce the risk of stroke in obstructive sleep apnea patients? A systematic review and meta-analysis. *PLoS One*. 2016;11:e0146317.

100. Nakamura S, Asai K, Kubota Y, et al. Impact of sleep-disordered breathing and efficacy of positive airway pressure on mortality in patients with chronic heart failure and sleep-disordered breathing: a meta-analysis. *Clin Res Cardiol*. 2015;104:208-16.

101. Cowie MR, Woehrle H, Wegscheider K, et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. *N Engl J Med*. 2015;373:1095-105.

102. Bradley TD, Floras JS; ADVENT-HF Investigators. The SERVE-HF Trial. *Can Respir J*. 2015;22:313.

103. Floras JS, Logan AG, Bradley TD. Adaptive servo ventilation for central sleep apnea: more data, please. *Can J Cardiol*. 2016;32:396.e3.

104. Heinzer R, Vat S, Marques-Vidal P, et al. Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. *Lancet Respir Med*. 2015;3:310-18.

105. Kribbs NB, Pack AI, Kline LR, et al. Objective measurement of patterns of nasal CPAP use by patients with obstructive sleep apnea. *Am Rev Respir Dis*. 1993;147:887-95.