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ABSTRACT

The landmark publication of the “British Postal Worker Study” by Fletcher and colleagues
in the 1970s established that chronic obstructive pulmonary disease occurs because smoking
exposure in susceptible individuals accelerates the decline of lung function that occurs
physiologically with age. In the 40 years since Fletcher et al. published the results of their
study, subsequent research has advanced our understanding of chronic obstructive
pulmonary disease and its natural history. The current review focuses on areas where
the proposal by Fletcher et al. require expansion and/or modification, including: (i) the
recognition of the role of exposures other than cigarette smoking (or even in its absence
where chronic obstructive pulmonary disease may be related to other conditions such as
asthma); (ii) that smoking affects a larger percentage of individuals than suggested by
Fletcher et al.; (iii) that the benefits of smoking cessation vary with age/disease severity;
(iv) that lung function decline does not accelerate with advancing age; (v) that many can
develop chronic obstructive pulmonary disease with “normal” rates of lung function
decline if they have abnormal lung growth and, therefore, low lung function at early age;
(vi) that the relationship between mucus hypersecretion, exacerbations, and lung function
decline is more complex than suggested by Fletcher et al.; and, finally, (vii) that chronic
obstructive pulmonary disease is now recognized to have extra-pulmonary manifestations
that can contribute significantly to the clinical impact of the disease. BRN Rev. 2015:1:116-30
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INTRODUCTION

Results of the eight-year study of early chronic
obstructive lung disease in working men in
London, informally called the “British Postal
Worker Study”, were published as a mono-
graph (The natural history of chronic bron-
chitis and emphysema) by Charles Fletcher,
Richard Peto, Cecily Tinker and Frank Speiz-
er in 1976'. This was followed by a summary
in the British Medical Journal in 19772. This
was truly a landmark study that has shaped
our thinking about chronic obstructive pul-
monary disease (COPD) and its natural histo-
ry for the subsequent four decades. The key
findings of the study, as summarized by
Fletcher et al.!, were as follows.

“Our basic conclusion is that there are two dis-
tinct, but commonly associated, components of
chronic obstructive lung disease.

“The obstructive disorder, due both to intrinsic
disease of the airways and to emphysema, is caused
by smoking, especially of cigarettes. Only a mi-
nority of cigarette smokers are affected severely
enough to become disabled by it. In them, it caus-
es more rapid loss of FEV with advancing age.
This loss can be detected before it is severe enough
to be disabling. If affected smokers stop smoking,
their lost FEV is not restored but the rate of sub-
sequent loss becomes normal, so that disablement
may be delayed or prevented.

“The hypersecretory disorder is also caused, in
susceptible subjects, by smoking and consists of
chronic, excessive secretion of bronchial mucus
sufficient to cause expectoration. It encourages re-
current clinical bronchial infections, which are
thus a common feature of the disorder. These cause
only temporary increases in expectoration. The

disorder is not usually progressive and usually
remits on stopping smoking. Susceptibility to it
correlates with, but is distinct from, susceptibility
to the obstructive disorder.

“In the preclinical stages of these disorders, which
we have studied, we find no causal relationship
between them, for neither mucus hypersecretion
nor clinical chest illness cause accelerated loss of|
FEV, and reduction of FEV is a cause of neither
mucus hypersecretion nor of clinical chest illnesses.
The two disorders are correlated with each other
only because susceptibility to one is in some way
linked to susceptibility to the other. Research is
still needed to discover how it is that certain
cigarette smokers develop significant obstruction,
whereas most do not”.

The graphic representation from the 1977
summary of the results published in the
British Medical Journal (Fig. 1 A), commonly
known as the Fletcher-Peto curve, is by far
the best-known graphic in the COPD litera-
ture. Initially proposed as a conceptual model,
the Fletcher-Peto curve has often been taken
as a representation of “the” natural history of
COPD, despite the accompanying discussion
that alternate natural histories were possible
(Fig. 1 B). Yet, the fundamental concept of a
single natural history, which was central in
the clinical epidemiology of the 1960s and
70s, is currently insufficient and inconsistent
with more recent studies that have identi-
fied a number of areas where the findings of
Fletcher et al. require expansion and/or
modification. These include:

— Recognition of the role of exposures other
than cigarette smoking, and that smoking
affects a larger percentage of individuals
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FiGure 1. The Fletcher-Peto Curve. A: the classic Fletcher-Peto Curve. Reproduced from their 1977 publication, this figure represents a
conceptual progression of the natural history of COPD. It was based on extrapolation of the data from the British Postal Workers Study.

It emphasizes the importance of accelerated lung function decline in susceptible smokers. B: this is figure 2 in Fletcher and Peto’s

1977 publication and indicates alternate natural histories. Current data suggest that those with accelerated decline and those with normal

Ication may

decline may be similar in numbers. See text for details (reproduced with permission from Fletcher et al.?).

FEV,: forced expiratory volume in one second.

— The benefits of smoking cessation vary with
disease severity;

— Lung function decline does not simply ac-
celerate with advancing age;

vart of this

— Many individuals can develop COPD with .
normal rates of lung function decline if
they have abnormal lung growth and,
therefore, low lung function at early age
(Fig. 2 A);
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— COPD may develop in the absence of obvi-
ous exposures and may be related to other
conditions such as asthma;

— The relationship between mucus hyperse-
cretion, exacerbations, and lung function de-
cline also appears to be more complex than
suggested by Fletcher et al; and, finally

— COPD is now recognized as having ex-
trapulmonary manifestations.

All these novel findings will have to be incor-
porated into any new model(s) describing the
natural history (or histories) of COPD. Impor-
tantly, research strategies, particularly those
designed to improve the outcome for COPD
patients, have been, in large part, based on
the narrow view of the COPD natural history
reflected in the Fletcher-Peto curve (Fig. 1 A).
The current BRN review will discuss the cur-
rent broader understanding of COPD natural
history, particularly with regard to implica-
tions for future studies.

DEFINITION AND HETEROGENEITY
OF CHRONIC OBSTRUCTIVE
PULMONARY DISEASE

Airflow limitation that cannot be fully re-
versed by bronchodilators, which serves as the
defining feature of COPD, can result from sev-
eral histologic lesions®*. These include destruc-
tion of alveolar wall with loss of lung elastic
recoil, the characteristic lesion of emphysema,
narrowing and loss of small airways, and,
likely, narrowing of larger airways together
with accumulation of inflammatory exudate
and mucus within the airway lumen. Each of
these lesions can result from several different

etiologic factors and pathobiological mecha-
nisms. Some causes of fixed airflow limitation
have been excluded from COPD definitions,
e.g. cystic fibrosis. Nevertheless, because the
diagnosis of COPD is based on a single phys-
iologic feature —the ratio between forced expi-
ratory volume in one second (FEV) and forced
vital capacity (FVC)- and there are many caus-
es that can affect this ratio, COPD is inherent-
ly heterogeneous. Moreover, cigarette smoke
can cause all of the histologic lesions that con-
tribute to airflow limitation, albeit to varying
degrees in different individuals. In addition,
their simple definition greatly facilitated epide-
miologic studies that could be based on rela-
tively simple assessments of large populations.

Over time, however, it has become increasing-
ly recognized that etiologies other than ciga-
rette smoke play important roles in the patho-
genesis of COPD*. Many, such as particulate
air pollution, may activate similar pathogenic
mechanisms to those activated by cigarette
smoke. However, air pollution appears to be a
risk factor in both smokers and non-smokers,
suggesting that pathogenic mechanisms are not
identical®. More importantly, the recognition
that multiple risk factors, discussed below, can
contribute to the development of COPD, and
that a given individual may have COPD as a
result of several distinct but interacting patho-
genic processes has emphasized the heterogene-
ity and complexity of COPD. Finally, the obser-
vation made by Fletcher et al. has been amply
confirmed that there is tremendous individual
variation in susceptibility to exposures such as
smoking and air pollution. Genetic differences
undoubtedly account for some of this variation,
and a number of “susceptibility” genes have
been identified®”. None of them, however,
have large effects, other than alpha,-antitrypsin

#% ¥ BARCELONA
_d__» RESPIRATORY
L1+ NETWORK

Collaborative research



BRN Rev. 2015;1

deficiency, which is relatively rare. Thus, it is
likely that many genes with small effects will
interact to account for some of the interindivid-
ual variability in susceptibility. To what degree
other factors such as diet account for variable
susceptibility remains to be determined®.

It has also become clear that COPD has more
manifestations that can be measured by assess-
ing airflow limitation alone. Within the lung,
for example, cough and sputum production,
susceptibility to exacerbations, dynamic hyper-
inflation, and compromise of the pulmonary
circulation with abnormal gas exchange and
reduction of cardiac output are all very loose-
ly related to altered airflow, but can be clini-
cally relevant features of COPD*%. Importantly,
COPD is also associated with extrapulmo-
nary manifestations in many organ systems
that are often a major clinical issue in individu-
al patients”!°. Interestingly, these extrapulmo-
nary manifestations appear to be features of
specific COPD patient subsets!'!2. In any case,
each of these features is likely to have a natural
history that may be quite independent of that
of airflow limitation. Indeed, current evidence
suggests that there are multiple disease trajec-
tories that can lead to COPD*. Moreover, as
disparate pathogenic processes may be active
in a given individual, a single patient may
manifest multiple natural histories. All these
are concepts that are not addressed by the
classic Fletcher-Peto paradigm.

CHRONIC OBSTRUCTIVE PULMONARY
DISEASE TRAJECTORIES

The classic Fletcher-Peto curve assumes that
individuals start with similar maximally at-
tained lung function and that COPD develops

as a result of accelerated lung function loss in
adulthood. Further, the way the curve was
drawn, the rate of loss was assumed to in-
crease with progressive ageing (Fig. 1 A).
Fletcher et al. recognized that this model was
an oversimplification and suggested that
COPD could also result from individuals who
started with reduced maximally attained
lung function in adulthood who then de-
clined at a normal rate (Fig. 1 B). There may
be, moreover, several different models (Fig. 2)
for compromised lung development and for
accelerated lung loss'®!*. Current concepts of
COPD natural history, therefore, are best con-
sidered in the context of the natural history of
lung function throughout the life of an indi-
vidual, from earliest development to old age,
as events at any of these times can impact
COPD natural history!>7.

Lung development. The human lungs devel-
op from the embryonic foregut as buds from
the laryngo-tracheal sulci at 26 days of gesta-
tion's. The lung buds then undergo dichoto-
mous branching, forming approximately 18
generations of airways through 16-26 weeks
of gestation. The epithelium of the airway pro-
gressively thins during this process, as does
the intervening mesenchyme. This results in
very thin epithelial layers separated by an at-
tenuated mesenchyme containing blood ves-
sels and structures that will become respirato-
ry bronchioles. At this point, dichotomous
airway branching is believed to cease, although
the process completes at different times at dif-
ferent parts of the lung. Alveolar walls form
by a separate process of septation in which
epithelial cells grow into the airspace lumen.
Several generations of this process account for
the acinar structure of the human lung. Three
to five generations of alveolar walls form in a
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Ficure 2. Potential trajectories for COPD natural history. A: schematic representation of lung function growth and development through
the human lifespan. B: Reduced maximally attained lung function in young adulthood could result from compromised foetal or childhood
development when lung structures are forming or from compromised lung growth at any time. C: A reduction in the duration of the plateau
phase of maximal lung function will lead to an earlier decline and, consequently, lower than normal lung function with age. Accelerated
lung function could begin in early adulthood and be gradual (D), episodic (E) or could begin in late life (F). None of these trajectories are
exclusive. See text for details (modified with permission from Rennard”?).
FEV,: forced expiratory volume in one second.
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process that continues through childhood and
forms most of the lung surface area.

Following formation of alveolar units, the lungs
grow in size and surface area as the thorax
grows in childhood and adolescence. Maximal
lung function is attained in young adulthood
and, in the majority of normal individuals, re-
mains constant for a period of 10 years or so'”8.
Following this plateau phase, lung function
begins to decline. The mechanism(s) for this
decline is not known, nor is it clear whether
this represents “normal” ageing or reflects the
response of normal individuals to the multi-
ple insults inherent with breathing (Fig. 2 A).

Pathogenic processes that can lead to COPD
may occur at any phase of this lung health
cycle (Fig. 2 B-F). Insults occurring during
gestation can compromise lung development.
The studies of Barker et al, which related
birth weight to health outcomes in later life,
established that being born small had a mea-
sureable effect on lung function and increased
COPD risk’, although the anatomic basis for
this effect remains undetermined. Subse-
quent studies have also established a role for
prematurity?’, maternal smoking???, and ma-
ternal nutrition>?* as early life determinants
of lung function that could contribute to
COPD risk. These risk factors may explain the
correlation between poverty and observed
mortality rates from COPD and other lung
diseases, including COPD in non-smokers®.
In childhood, both passive?? and active*? cig-
arette smoking can compromise lung growth,
leading to reduced maximally attained lung
function. Lung function growth is also com-
promised among children who developed
broncho-pulmonary dysplasia®>?. Similarly, both

reactive airways®”, while controversial, and
childhood infections'?*%! also appear to com-
promise lung growth. A potential mechanism
is suggested by studies in an early childhood
model of asthma in the rhesus macaque. In
this model, the development of asthma led to
a reduction in the number of airway branch-
es®, a feature that is also present in human
patients with COPD33. Whatever the mecha-
nisms, a variety of factors can result in reduced
maximally attained lung function, which can
increase the risk for COPD (Fig. 2 B).

After attaining a maximum in young adult-
hood, in most individuals, lung function re-
mains constant for about 10 years, after which
it slowly declines!”183* In cigarette smokers, the
duration of the plateau phase is reduced and
the decline begins earlier'”1%% (Fig. 2 C). Some
non-smokers also experience a shortened pla-
teau phase, although the risk factors for this are
unknown'. A shortened plateau phase should
result in compromised lung function at an ear-
lier age and increase the risk for COPD.

NATURAL HISTORY OF CHRONIC
OBSTRUCTIVE PULMONARY DISEASE
IN ADULTS

In clinical practice, COPD is most often diag-
nosed in smokers who complain of dyspnoea
during activities of daily living, most com-
monly between the ages of 50-70 years. Al-
though treatment is often started based on
clinical impression, definitive diagnosis re-
quires spirometric confirmation of the pres-
ence of poorly reversible airflow limitation,
which can guide treatment>*. Given that the
latter can influence the clinical features, evo-
lution, and prognosis of these patients, it
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seems appropriate to discuss separately the
“natural history” of COPD in the adult before
and after the diagnosis of COPD has been
established and treatment started.

Natural history of chronic
obstructive pulmonary disease prior
to diagnosis

While a landmark, the study by Fletcher et al.!
was limited by its relatively small sample size
(792 healthy male postal workers from London,
aged 30-59 years) and a relatively short fol-
low-up time (eight years). The effects of smok-
ing cessation included in the tigure, and often
cited as fact, were speculation, albeit support-
ed by the subsequent Lung Health Study®”.

A more recent analysis of the Framingham Off-
spring Cohort (FOC) revisited these issues in a
larger cohort of men and women (n = 4,391)
with a wider age range (13-71 years) followed
for a longer period of time (median follow-up
time of 23 years)®®. Key results of this study
include: (i) healthy never-smoker females
achieve full lung growth earlier than males,
and their rate of lung function decline with age
is slightly lower than that of males (Fig. 3); (ii)
as shown by Fletcher et al!, smoking indeed
increases the rate of lung function decline,
both in males and in females, and there is a
range of susceptibility to the effects of smok-
ing, as they suggested. Interestingly, the pres-
ence of respiratory symptoms at baseline
and/or a respiratory diagnosis during fol-
low-up appears to identify a group of suscep-
tible smokers®-#!, although a significant pro-
portion of adults without symptoms will also
be at high risk*’; and (iii) quitting smoking has
a beneficial effect at any age, but it is more

pronounced in earlier quitters, resulting in a
modified Fletcher-Peto curve (Fig. 3).

A subsequent analysis by Lange et al. of three
cohorts (the FOC, the Copenhagen City Heart
Study, and the Lovelace Smoker cohorts) has
investigated the natural history of COPD pa-
tients in a larger number of subjects and over
longer time frames, and has shown that differ-
ent lung function trajectories can lead to in-
cident COPD in adulthood®. In particular, as
shown in figure 4, approximately 50% of indi-
viduals with COPD in adulthood fit the Fletch-
er-Peto model (Fig. 1 A) as they have normal
lung function before 40 years of age and devel-
op COPD through an accelerated FEV, decline
(53 + 21 ml/year). By contrast, the other 50% of
individuals with COPD in adulthood already
had low FEV, in early adulthood, indicating
abnormal lung development, (Fig. 1 B) and a
much lower subsequent rate of decline in FEV,
(27 £ 18 ml/year; p < 0.001), despite similar
smoking exposure (Fig. 4)¥. That low lung
function in early life is an important risk factor
for the development of COPD in adulthood is
further supported by the observation that 26%
of participants with abnormal lung function
before 40 years of age develop COPD after 22
years of observation, whereas only 7% of those
with normal FEV, in early life did so (p < 0.001).
These cohorts are not all population-based
samples, and thus cannot determine the prev-
alence of COPD trajectories in the general pop-
ulation**. Nevertheless, the study by Lange et
al. clearly illustrates that low lung function in
early adulthood is important in the genesis of
COPD. While the possibility of different tra-
jectories was clearly stated by Fletcher et al.
(Fig 1 B), the Fletcher-Peto curve has become
a type of dogma for the COPD Natural His-
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Ficure 3. Forced expiratory volume in one second (expressed as % of its value at 25 years of age) changes through life in males (top) and
females (bottom). Curves for never-smokers, continuous smokers, and smokers who quit before the age of 30 years, between 30-40 years,
and after 40 years of age are depicted. For more information see text (reproduced with permission from Kohansal et al.).

FEV,: forced expiratory volume in one second.

Natural history of chronic
obstructive pulmonary disease after
clinical diagnosis is established and
treatment started

There are no data on the natural history of un-
treated COPD, as treatments with meaningful
benefits are available and it would be unethical

to withhold them. Further, many patients with 2
COPD have comorbidities, the treatments for| -
which may also affect the natural history of| -
COPD. While no COPD treatment is regarded
as meaningfully affecting lung function decline,
in TORCH, both salmeterol and fluticasone pro-

prionate each resulted in a statistically signif-

icant reduction in lung function decline over
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Ficure 4. Four different lung function trajectories through life and the proportion of individuals in each trajectory according to a combined
analysis of the Framingham Offspring Cohort, the Copenhagen City Heart Study and the Lovelace Smoker cohort. For further information

see text (reproduced with permission from Lange et al.%).
FEV,: forced expiratory volume in one second; TR: trajectory.

three years of 13 ml/year®. The combination
was even more effective, although the difference
from placebo of 16 ml/year did not achieve the
20 ml/year reduction generally regarded as im-
portant — albeit somewhat arbitrarily chosen?.
UPLIFT assessed whether tiotropium could
slow lung function loss. While there was no
effect in the total population, among those
with milder disease a 6 ml/year reduction in
lung function decline was observed*%. Con-
current treatment of subjects in UPLIFT with
other medications including inhaled cortico-
steroids and long acting 3-agonists makes it
difficult to conclude that there is no effect of

treatment. Similarly, as treatments for comor-
bidities associated with COPD may also affect
COPD natural history, understanding the nat-
ural history of COPD will be problematic.

The classic Fletcher-Peto curve shows lung
function loss accelerating with increasing age.
However, several studies have documented
that the rate of FEV, decline in patients with
COPD is steeper in patients with mild-to-mod-
erate than in those with severe-to-very severe
airflow limitation*->° (Fig. 5). Further, patients
with moderate to very severe airflow limitation
included in different randomized clinical trials
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Ficure 5. Forced expiratory volume in one second changes in the different arms of the TORCH” and UPLIFT¥ studies superimposed on top
of the predicted Fletcher and Peto model (dashed line). For further explanations see text (reproduced with permission from Decramer et al.”).

FEV,: forced expiratory volume in one second.

have a similar age (Fig. 5). This suggests that
studies designed to modify the rate of decline
of FEV, need to focus on younger individuals
with milder disease. Importantly, some of these
individuals may have normal rates of decline,
while others may have accelerated rates of de-
cline, as suggested by Fletcher et al. and as
recently demonstrated by Lange et al.*3, and
suggested by others®. Thus, biomarkers that
can determine individual disease trajectories
will be important for the design of COPD
prevention and treatment trials.

The ECLIPSE study also demonstrated that
FEV, does not uniformly decline with age in
patients with treated COPD*". Not only was
decline variable, 8% of COPD patients includ-
ed in ECLIPSE had an increase of more than
20 ml/year over the three years of follow-up.
Interestingly, Fletcher et al. noted in the ap-
pendix of their monograph that lung function
may improve over time in some COPD pa-
tients!, and other studies have confirmed that
in a minority of COPD patients, lung function
improves over time>>>3.
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Clinically important chronic
obstructive pulmonary disease

The concept of “clinically important COPD”
has also evolved since the publication of the
work by Fletcher et al. They commented that
about 13% of smokers would eventually be
diagnosed with COPD, generally because of
the presence of symptoms of dyspnoea, cough,
and/or sputum!. This has been rounded off
and incorrectly quoted as: “15% of smokers
will get COPD.” In fact, while susceptibility
is variable, more than 50% of smokers will
develop the airflow limitation criteria for
COPD**>, though the majority remain undi-
agnosed®. The majority of the undiagnosed
COPD patients generally have milder airflow
limitation, which has raised the question of
what is clinically important COPD.

In 1995, the American Thoracic Society State-
ment on Diagnosis and Management of COPD
classified all individuals with FEV, > 50% as
having mild disease”. Further, the lung func-
tion impairment of these individuals was re-
garded as being insufficiently compromised to
cause symptoms. Therefore, treatment of these
individuals was not recommended. Since that
time, it has become recognized that COPD
patients develop symptoms of dyspnoea
whenever tachypnea leads to dynamic hyper-
inflation®®. The most common cause of tachy-
pnea is exertion. However, dyspnoea on exertion
is easily avoided by becoming progressively
more sedentary. As a result, COPD patients
become remarkably restricted in their activi-
ties, but do not necessarily complain of dys-
pnoea. Dynamic hyperinflation, together with
abnormal gas exchange, can develop even in
very mild COPD and can compromise exercise
performance® . Individuals with mild COPD

are also at increased risk for extrapulmonary
problems. The increased risk of cardiac dis-
ease associated with COPD, for example, is
present with very modest decrements in lung
function; there is approximately a threefold
increased cardiovascular risk as the FEV, ap-
proaches the accepted lower normal range of
80% predicted compared to the best group
with 110% predicted FEV ®.. The recognition
that COPD patients with mild disease have
physiologic limitations and an adverse
prognosis has led to efforts to intervene to
improve function and outcome of patients
beyond the 13% Fletcher et al. suggested
would come to diagnosis.

Features other than forced
expiratory volume in one second

Relatively little is known about the natural
history of features of COPD other than the
FEV,. Chronic mucus hypersecretion often
coexists with mild COPD, where it is a risk
factor for subsequent decline in lung func-
tion®, hospital admission®?, mortality in gen-
eral®3, and pneumonia®. Cough and sputum
resolve with smoking cessation in the major-
ity of subjects®>, but the natural history of
these problems among those where there is
not resolution is not well described.

Exacerbations generally increase as FEV, in-
creases, but the relationship is weak®. Simi-
larly, exacerbation risk generally increases
with time and the inter-exacerbation interval
for severe exacerbations shortens®.

COPD is now recognized as a complex dis-
ease that has extrapulmonary manifestations®.
Importantly, these extrapulmonary features
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are often the most important problem faced by
patients. The natural history of these extrapul-
monary manifestations in COPD is largely
unknown. It is clear, however, that the pres-
ence of multiple comorbidities is common
and increases risks and costs of care!®%.

IMPLICATIONS OF THE NEW
UNDERSTANDING OF THE NATURAL
HISTORY OF CHRONIC OBSTRUCTIVE
PULMONARY DISEASE FOR FUTURE
STUDIES

The COPD population is extremely heteroge-
neous, for the reasons described above. This
may have important effects on both the nat-
ural history and response to therapy. For ex-
ample, several studies suggest that the benefit
of inhaled glucocorticoids for reducing COPD
exacerbations is limited to those patients with
higher eosinophils®®”. Whether the benefits
of inhaled glucocorticoids on slowing lung
function loss is similarly limited (and of a
greater magnitude) in this specific subgroup
of patients is unknown. Unfortunately, most
information on the COPD natural history, in-
cluding both observational and intervention-
al studies, derives from studies using simple
definitions based largely on airflow limita-
tion in populations limited to smokers. As a
result, little is known about the differences in
COPD natural history associated with different
exposures, genetic risk factors, or develop-
mental effects.

Because COPD is a major public health prob-
lem, a major public health goal has to be to
improve its natural history. Prior efforts at-
tempting to address this question have been
largely unsuccessful, in part because they

were based on the simple model of the Fletch-
er-Peto curve. For example, the EUROSCOP
trial assessed the effects of inhaled budesonide
on the rate of lung function decline and found
no benefit’!. Whether a trial focusing on mild
individuals with higher eosinophils, or only
on those individuals clearly following an ac-
celerated decline of lung function trajectory
might have been successful remains un-
known. A notable exception of interventional
studies in COPD, however, was the Lung
Health Study®. Importantly, this study of
smoking cessation enrolled only smokers,
who therefore had the potential to benefit
from the intervention. A parallel requirement
for other mechanistic interventions is likely
to be required in future studies designed to
alter the natural history of COPD.

SUMMARY

The study of Fletcher et al. was a landmark
study that greatly advanced our understand-
ing of COPD. Recent advances have extended
our learning, and this new information need
to be incorporated into our conceptual frame-
work of the COPD natural history. Specifical-
ly, recognition that COPD is a life-long con-
dition, and that early life events and childhood
health and growth, as well as adult expo-
sures, contribute to COPD risk is essential. In
addition, COPD disease progression appears
to be most rapid, at least for those individuals
losing airflow at an accelerated rate, when the
disease is moderate rather than later in the dis-
ease course, although dropouts and selection
bias may have affected these conclusions.
Finally, it is likely that the many aetiologies
that contribute to COPD pathogenesis will
have different natural histories. These new
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understandings will be important in the de-
velopment of interventions designed to alter
the natural history of the many patients who
suffer COPD.
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