

Exercise and chronic pulmonary diseases in pediatrics

Marta Bascuas-Arribas and Verónica Sanz-Santiago*

Pneumology Section, Hospital Infantil Universitario Niño Jesús, Madrid, Spain

ABSTRACT

Chronic respiratory diseases in pediatrics can significantly affect the quality of life of children and adolescents, impacting their ability to engage in daily activities, including sports. Physical exercise offers benefits for both physical and mental health and has become an integral part of managing chronic conditions. However, many pediatric patients with respiratory diseases are unable to participate in physical activities due to exercise intolerance. This review explores how different chronic respiratory conditions affect exercise response, examining the impact on lung function, physical capacity, and overall quality of life. It also highlights the effectiveness of various training programs that have demonstrated the most benefits. The literature suggests that physical exercise plays a crucial role in managing chronic respiratory diseases, offering both prognostic and therapeutic advantages. Incorporating exercise programs into treatment plans should become standard practice. Nonetheless, further research is necessary to determine the optimal training protocols for each specific condition.

Keywords: Physical exercise. Chronic respiratory diseases. Pediatrics. Training programs.

*Correspondence to:
Verónica Sanz-Santiago
E-mail: veross81@yahoo.es

Received: 19-01-2025
Accepted: 17-02-2025
DOI: 10.23866/BRNRev:2025-M0122
www.brnreviews.com

INTRODUCTION

Physical exercise has been shown to significantly improve physical and mental health in healthy people, improving quality of life and well-being¹. It decreases mortality from cardiovascular disease, the incidence of hypertension and type 2 diabetes, anxiety symptoms, and improves sleep quality². In the pediatric age, it also promotes proper growth, improves physical condition (cardiorespiratory and muscular), improves cardiovascular health, and creates healthy habits for adult life^{2,3}. The effects of exercise on emotional well-being have also been studied⁴, and positive impacts on psychological and social health have been found. Among the modalities of physical activity, team sports have shown a more significant benefit in the psychosocial sphere⁴. In addition, physical exercise has also been shown to have an immunomodulatory role due to the release of anti-inflammatory cytokines from muscle⁵ and stimulation of the immune system⁶.

In the last three decades, knowledge about physical exercise in disease has increased significantly and it is now part of the first-line treatment in several chronic pathologies⁷. In 2007, the American Sports Medicine Association launched the “Exercise is Medicine” project to raise awareness and motivate physicians to use physical exercise to treat and prevent chronic diseases^{8,9}. These initiatives were also applied to chronic respiratory diseases¹⁰⁻¹³. The next step has been to investigate what training may benefit these patients the most. For example, an article published in 2023 suggests that internalized moderate-intensity exercise may be an effective and safe way to improve fitness, muscle strength,

body composition, and quality of life in patients with chronic obstructive pulmonary disease (COPD)¹⁴.

On the other hand, it should be taken into account that respiratory symptoms with physical exercise are frequent in both healthy children and adolescents¹⁵ and those with chronic respiratory pathologies. In these patients, dyspnea and limitation of physical exercise are persistent symptoms associated with worsening quality of life¹⁶, so their improvement is one of the treatment objectives. Exercise intolerance, understood as the inability to perform physical activity at the same level as people of the same age with an adequate physical condition, is one of the treatment objectives¹⁷ that often leads patients with chronic respiratory disease to perform less exercise, thus preventing them from experiencing its benefits. In addition, limitation to physical exercise in these patients is associated with a worse prognosis^{12,18,19}.

The reasons for this exercise intolerance in respiratory pathologies are multiple and may differ from one disease to another¹⁷. Ultimately, it is caused by an imbalance between the different physiological systems (decreased ventilatory capacity and increased ventilatory requirements due to increased metabolic demand from exercise). In addition, the increased perception of dyspnea is often added to the various pathophysiological processes²⁰. Table 1 summarizes the physiological mechanisms involved in exercise intolerance in chronic respiratory diseases^{13,20}.

Pulmonary function tests or clinical history are not always sufficient to assess physical capacity in chronic respiratory diseases, partly

TABLE 1. Summary of pathophysiological mechanisms involved in limitation to physical exercise in patients with chronic respiratory diseases

Ventilation limitation: mismatch between ventilatory capacity and workload
Alteration of gas exchange. Reduction of oxygen supply to respiratory and locomotor muscles
Central and peripheral hemodynamic limitations: venous return and pulmonary capillary blood volume decrease, further altering the supply to working muscles
Musculoskeletal disorders: peripheral muscle dysfunction

because when presenting symptoms with physical exertion, patients avoid performing it, thus underestimating clinical²¹. The best test to evaluate the response to physical exercise in these cases is the cardiorespiratory ergometry (CPET)¹⁶, which identifies exercise limiting factors, those that can potentially be improved, and provides prognostic information²². The value that provides the most information in this test is the maximal oxygen consumption (VO_2 max), which is defined as the maximum amount of oxygen that a person can use in a given time, measured in milliliters of oxygen per minute per kg of body weight (ml/kg/min)²³. Peak oxygen consumption refers to the amount of oxygen that the organism extracts per unit of time in a physical exertion performed up to the maximum tolerated intensity²⁴. It is considered a good alternative to VO_2 max in evaluating physical condition, especially when it is possible to reach the maximum intensity, as occurs in pathologies that limit the ability to perform the physical exercise^{25,26}. CPET can be performed both on a treadmill and on a cyclo-ergometer, with the treadmill offering advantages over the bicycle. This type of ergometry allows obtaining higher VO_2 peak values in healthy children and those with

TABLE 2. Main advantages and disadvantages of treadmill and cycle-ergometer cardiorespiratory ergometry

	Treadmill	Cycle-ergometer
Advantages	Easy calibration Suitable for all ages Regular physical activity Involves more muscle groups Higher VO_2 max is achieved	Greater patient stability Greater registry stability Load control Easier to apply ramp protocol
Disadvantages	Requires more space More expensive equipment Higher risk of falls Less stable registry	Not feasible for younger children More complex exercises to perform Involves fewer muscle groups

chronic pathologies²⁷. This difference could be explained by greater muscle fatigue on the bicycle compared to the treadmill²⁷. In addition, on the treadmill, there is a more rapid increase in ventilation²⁸, more muscle groups are activated, and it is a more common type of exercise. Table 2 details the advantages and disadvantages of both kinds of ergometry. CPET can be performed early (Fig. 1) in experienced centers, providing information on diagnosis, prognosis, and the effectiveness of training plans²⁹.

The 6-min walk test (6MW) is a submaximal test that also evaluates exercise response. It is a widely used field test, which is more economical and easier to perform³⁰. The 6MW is essential in patients who cannot perform the CPET due to technical difficulties or in patients with more significant deterioration where ergometry may be a risk^{31,32}. In pediatric chronic respiratory pathologies, the 6MW has an essential role in evaluating the efficacy of different treatments and prognostic value in pathologies such as pulmonary hypertension³³.

FIGURE 1. Six-year-old patient with cystic fibrosis performing cardiorespiratory ergometry (*this image belongs to the author*).

or lung transplantation³⁴. It is also used in bronchopulmonary dysplasia (BPD)³⁵, cystic fibrosis (CF)¹⁸, or post-infectious bronchiolitis obliterans (PIBO)^{32,36}.

This review aims to review the current literature on the role of physical exercise in managing chronic respiratory diseases, analyzing the underlying physiological mechanisms and specific recommendations on the types of training for each pathology.

ASTHMA

Asthma is the most common respiratory disease in the pediatric age group. The global initiative for asthma defines it as a heterogeneous disease characterized by chronic airway inflammation and bronchial hyperresponsiveness, resulting in variable

airflow limitation that is generally reversible. Clinically, it is manifested by recurrent respiratory symptoms such as cough, dyspnea, and restriction of physical activity³⁷. Symptoms with exercise are persistent, but on many occasions, they are not due to asthma but to lack of associated physical condition. It is thought that between 40 and 90% of patients with asthma have exercise-induced bronchospasm²⁵. However, it is currently believed that this figure may be overestimated^{38,39}.

The limitation to physical exercise in asthma is associated with different factors^{16,40}

- The degree of baseline airway obstruction and air trapping. Patients with more significant obstruction may present mechanical-ventilatory limitations and exertional dyspnea similar to COPD.

- Decreased ventilatory capacity. An excessive increase in ventilation (increased chemo-stimulation) and increased ineffective ventilation during exercise have been described. This could increase airway dehydration and favor bronchoconstriction.
- Increased perception of dyspnea.
- Bronchoconstriction by exertion. At present, the most accepted hypothesis is the osmotic stress in the airway mucosa. This initiates an inflammatory response that culminates in bronchoconstriction²⁸.

Physical exercise can provoke or worsen asthma symptoms, limiting sports practice in these patients. Less activity could lead to a deterioration of their physical capacity. However, there is controversy as to whether asthmatics are in worse physical condition than non-asthmatics. Some studies show that this difference does exist^{41,42}, and in others, a worse physical condition has not been objectified⁴³.

Exercise as part of the treatment of asthma has been studied for years. In 2013, a Cochrane review⁴⁴ concluded that physical training is well tolerated and significantly improves cardiorespiratory fitness in people with asthma. No differences were found in other lung function variables, such as 1st-s exhaled volume (FEV₁).

There have been numerous studies on asthma and exercise in the pediatric population. In 2014, a systematic review⁴⁵ included 29 studies conducted between 1972 and 2010, with 1,045 patients aged 6-18. The training programs evaluated were swimming in 7

studies, aerobic activities such as athletics, basketball, or soccer in 16, Tai Chi in 1, and respiratory exercises in another. Pulmonary function was evaluated in 24 studies; only three showed an improvement in FEV₁ after the training program. Peak expiratory flow was the parameter that showed a slight improvement after exercise in most studies. The authors conclude that it is impossible to relate the improvement in FEV₁ to training. Studies have continued to be published in which no differences have been found in lung function after different exercise programs^{46,47}. However, there is also data in favor of improvements in lung function after training programs. The systematic review by Zhang et al.⁴⁸ found an improvement in forced vital capacity (FVC) after training programs, with no change in FEV₁. A study published in 2018⁴⁹ also observed an increase in FEV₁ and FVC after 10 weeks of training. In 2021, a new systematic review of adult patients⁵⁰ showed an improvement in lung function in almost half of the included studies.

In terms of quality of life, in the 2014 review⁴⁵, few studies evaluated quality of life, but most of them showed an improvement in this parameter^{51,52}, and the one that did not show an improvement in this parameter⁵³ related it to a good baseline quality of life with little possibility of improvement. The physical condition measured with VO₂max improved in the studies in which a training program with intensities fixed at the ventilatory threshold was used for at least 120 min/week⁴⁵. No baseline medication changes were observed after exercise in any study³⁴. Publications on exercise in asthma have continued to increase in the last 10 years. The 2021 review⁵⁰ in adult patients provided data on the benefits of

training in the control of asthma symptoms. Although outcome measures varied among studies, 7 of the 12 that looked at asthma control showed statistically significant improvement with exercise.

Different training strategies have been evaluated as a treatment for asthma, primarily based on aerobic exercise⁵⁴. Much importance is given to muscle function in healthy and chronically ill individuals^{55,56}. Therefore, combined programs have also begun to be published in children and adolescents with asthma. In 2020, Sanz-Santiago et al.¹¹ published the effects of an exercise program on lung function and asthma control quality of life in children with mild–moderate asthma who presented symptoms with exercise. They conducted a clinical trial with a control group. The intervention consisted of 12 weeks of training (3 days/week) with combined exercise (resistance and aerobic). A total of 60 patients were included, with no statistical differences in demographic or baseline clinical characteristics. At the beginning of the study, all patients underwent a bronchial provocation test to assess bronchial hyperresponsiveness, CPET strength measurement as the primary measurement. After the intervention, these measurements were repeated at the end of the study, showing an improvement in cardiorespiratory capacity muscle strength in the training group. The ergometry data also suggested improved ventilatory efficiency, which may improve dyspnea and exercise capacity perception. No significant differences in quality of life or lung function were found. More recently, in 2022, Jiang et al.⁵⁷ published a systematic review that aimed to measure the value of physical exercise in the treatment of asthma as well as to

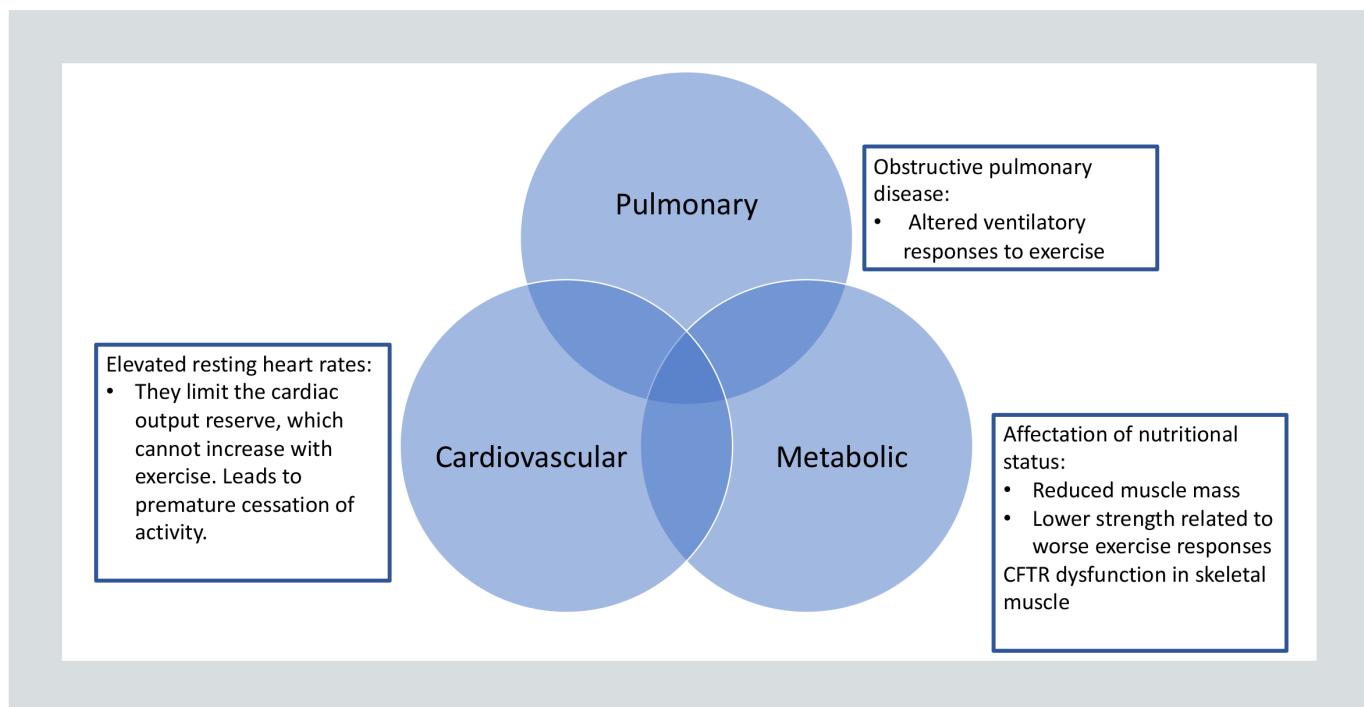
evaluate different training programs. Twenty-four randomized controlled clinical trials were analyzed. As a novelty, interval exercise is discussed. This improved quality of life with higher scores in the PAQLQ questionnaire and significantly improved the distance covered in the 6MW test. No significant differences were found in the FEV₁⁴⁵. Table 3 summarizes the papers published in the last decade on different training programs in asthma^{11,47,49,58–63}.

Physical activity is recommended in children and adolescents with asthma as an integral part of the treatment since it is safe and effective^{36,37,45}. However, as the studies are very heterogeneous, it is still unclear what type of exercise and at what “dose” the most significant benefits are obtained. Aerobic training has been the most investigated so far, but both combined and interval exercise may offer more essential benefits, so studies comparing different training programs are needed.

CF

CF is the most common genetic disease in the caucasian race. It is caused by CFTR gene mutations that encode the protein of the same name. Alterations in this protein condition the transport of ions, causing thick secretions. This gene is expressed in different organs, so CF is a multisystemic disease, but the respiratory manifestations are the ones that cause the highest morbidity and mortality⁶⁴.

The life expectancy in CF has changed dramatically since it was first described in 1938⁶⁵. Mucociliary clearance therapies, inhaled antibiotics, digestive treatment with pancreatic


TABLE 3. Summary of papers published in the last 10 years with different training programs

First author/year	Age (years)	Type of exercise	Frequency of training	Duration and intensity	Improvements
Yang et al. (2023) ⁵⁸	5–12	Combined: resistance exercise (aerobic) + respiratory muscle training	3-5 days/week. At least 30 min	12 weeks/moderate-high	Asthma control (p < 0.05) Quality of life (p < 0.05)
Elnaggar (2021) ⁵⁹	12–16	Inspiratory muscle training and respiratory training	Inspiratory muscles: 20 min/day. 3 days/week. Breathing training: 30 min 3 days/week	12 weeks/moderate	FEV ₁ (p = 0.03) FVC (p:0.001) FEV ₁ /FVC (P:0.04)
Yadav et al. (2021) ⁶⁰	10–16	Aerobic (Yoga)	1 time/day for 45 min	12 weeks	FEV1 (p < 0.01) FVC (p = 0.01) PAQLQ (p:0.01)
Sanz-Santiago et al. (2020) ¹¹	7–17	Combined: Endurance + aerobic	3 times/week for 60 min	12 weeks/moderate-high	VO ₂ peak (p = 0.016) Muscle strength in legs (p < 0.01)
Zhang and Yang (2019) ⁶¹	4–12	Aerobic	3 times/week for 40 min	6 weeks	No change in FEV ₁
Khodashenas et al. (2019) ⁶²	6–18	Aerobic + strength	3 times/week for 45 min	8 weeks	Quality of life (p < 0.05)
Abdelbasset et al. (2018) ⁴⁹	8–12	Aerobic (treadmill walking)	3 times/week for 40 min	10 weeks/moderate	FEV ₁ (p = 0.47) VO ₂ max (p = 0.011)
Andrade et al. (2014) ⁴⁷	6–17	Aerobic	3 times/week for 60 min	6 weeks/moderate-high	Distance in 6MW Quality of life
Latorre-Román et al. (2014) ⁶³	10–12	Interval exercise	3 times/week for 60 min	12 weeks/high intensity	FEV ₁ 6MW Upper limb strength Quality of life

enzymes, nutritional support, the creation of multidisciplinary units, and neonatal screening increased survival into the third-fourth decade of life⁶⁶. The advent of modulatory therapy in 2012 was a significant breakthrough in the survival and quality of life of people with CF. Studies based on mathematical simulations have estimated that those who initiate modulatory therapy from birth could reach the eighth decade of life, approaching the average life expectancy⁶⁷. This change implies that the number of older adults with CF will increase, and they are likely to suffer from age-associated pathologies such as cardiovascular disease, so it is essential to create healthy habits for the future.

The mechanisms limiting physical exercise in CF appear to be related to alterations in exercise-induced ventilation, compromised gas exchange, peripheral muscle dysfunction, and poor nutritional status⁶⁸. CFTR is also expressed in the skeletal musculature, and its dysfunction is another factor that may limit physical activity⁶⁹. Figure 2 summarizes the pathophysiology of exercise in cystic fibrosis¹³.

Despite the exercise limitation of people with CF, studies on the role of physical activity in treatment, primarily as a mucociliary clearance therapy, have been published since the 1960s^{70,71}. One of the top 10 research questions in CF is whether physical exercise can replace

FIGURE 2. Factors involved in the response to exercise in people with cystic fibrosis.

respiratory physiotherapy. A survey of the CF community was published in 2020 and was answered by patients and health-care professionals in 488 of them. Fifty-four percent of patients already incorporated physical exercise into mucociliary clearance techniques, and 48% did not perform physical therapy when they had practiced physical activity. Only 8% of the health-care professionals (9/110) were willing to substitute physical therapy for exercise in selected cases, but 73% (80/110) agreed to conduct a trial by substituting physical therapy for exercise⁷². Exercise is considered one of the five most essential treatments for people with CF⁷³. It contributes to improving dyspnea on exertion and exercise tolerance⁷⁴. In addition, when performed regularly, it slows the decline in pulmonary function and facilitates the elimination of secretions^{75,76}. Better physical condition has been associated with a lower risk of hospitalization¹⁹. In addition, it plays an essential role in the control of CF-related diabetes⁷⁷.

In 2022, a Cochrane review was published⁷⁸, to describe the long-term effects of physical activity on VO_2 peak, lung function (FEV₁), and quality of life. In addition, the authors aimed to identify the most optimal training guidelines for these patients, including the type of exercise, its duration, intensity, and the need for supervision. Twenty-four clinical trials (875 patients) were included, 13 of which included a pediatric population, with sample sizes ranging from 9 to 117 participants. The review showed that training programs lasting more than 6 months improved the physical condition (increase in VO_2 peak) of people with CF compared to those who did not undergo training (mean difference 1.60 mL/min per kg; CI: 0.16-3.05, $p < 0.005$). However, exercise had little or no effect on lung function or respiratory symptoms. The authors concluded that given that exercise's adverse effects are rare and its benefits on physical fitness are evident; its practice can

be recommended in CF. The benefits of exercise are likely to depend on the type and duration of training. High-quality studies with larger sample sizes are needed to understand physical exercise's effect better.

In 2022, a team of Spanish researchers¹² published a systematic review with objectives similar to those of Cochrane⁷⁸. The aim was to determine the effectiveness of exercise programs on physical fitness and lung function in people with CF to establish the most appropriate type and dose of exercise. Twelve studies were included, all controlled clinical trials, seven performed in pediatric ages. The interventions in children lasted between 2 and 12 months with training sessions of 60-210 min/week of light or moderate intensity. The types of exercise were resistance in four studies, resistance + neuromuscular stimulation in one, and respiratory muscle training in three. In adults, the interventions lasted 2-6 months; aerobic exercise was performed in three studies, and a combination of resistance + aerobic exercise was performed in two. There were no differences in the FEV₁ after the training programs. In children, there was no improvement in peak VO₂ (mean difference: 0.22; 95%CI: -0.25-0.68; $p = 0.73$), probably due to small sample sizes or the insufficient number of studies. Improvements in muscle strength were observed. In adults, there were statistically significant improvements in VO₂peak. The most effective exercise programs use strength or cardiovascular training with high-intensity intervals.

The advent of CFTR modulating therapy has opened up the possibility of change in the response to exercise in people with CF receiving such treatment. As mentioned above,

CPET would be the best tool to assess this response^{16,22}. In addition, it has been shown that CPET parameters correlate with radiological deterioration⁷⁹ and lung clearance index values⁸⁰ in CF. Therefore, CPET parameters, especially peak VO₂, have begun to be used as a variable to evaluate the effect of new modulators⁸¹. However, the published data are limited and inconclusive as to the true impact of modulatory therapy on exercise response⁸². More studies with larger sample sizes will likely be published in the coming years.

INTERSTITIAL DISEASES

Interstitial lung diseases are a heterogeneous group of pathologies that share clinical (dyspnea, cough, and exercise intolerance) and functional characteristics such as decreased total lung capacity, diffusion impairment, or exercise-induced hypoxemia. In these entities, tidal volume cannot be increased when metabolic demand increases during exercise, preventing adequate exercise capacity. The respiratory dynamics during physical exertion are rapid and superficial, further expanding the work of breathing. In these patients, the alteration of gas exchange and circulatory alteration also play an essential role in limiting physical exertion¹³. In childhood, PIDs are infrequent; in Spain, a study published in 2022 calculated a prevalence of 46.53 cases/million children⁸³. The studies on exercise in these pathologies are in adult patients, and pediatric data is not available.

One of the first symptoms of interstitial diseases in older children is dyspnea on exertion

and desaturation with physical exercise, one of the first functional alterations⁸⁴. Therefore, it would be advisable to evaluate the response to exercise in these patients as soon as possible, using CPET or with the 6MW. Suppose a drop in oxygen saturation (SatO_2) occurs during training; in that case, it may be necessary to take interval exercise, respiratory support with nasal cannula oxygen therapy, non-invasive ventilation, or other exercise alternatives such as Nordic walking or downhill training⁷.

OTHER CHRONIC LUNG DISEASES

Bronchiolitis obliterans

Bronchiolitis obliterans is a rare and severe chronic obstructive small airway disease. It is produced as a consequence of pulmonary aggression that ends up causing a narrowing and obliteration of the smaller airway. The most frequent etiology in children is post-infectious (PIBO)²³, but it can also occur in the context of some systemic diseases or after lung or hematopoietic progenitor transplantation. The clinical presentation is characterized by persistent respiratory symptoms such as cough, labored breathing, dyspnea, or exercise limitation. In some patients, the symptoms may be silent, especially in the early stages of the disease, making diagnosis difficult. Pulmonary function will show a non-reversible obstructive pattern⁸⁵.

Symptoms of physical activity are frequent in patients with bronchiolitis obliterans; however, in the literature, few papers evaluate exercise capacity in this disease nor the role of sport as a treatment.

A systemic review of 2019 in PIBO⁸⁶ included four studies^{36,87-89} with an adequate methodology that reviewed physical exercise capacity in patients with PIBO. The review included 135 patients (121 with PIBO and 14 healthy) aged between 8 and 23 years. Of the four studies, two used the 6-min test (6MW)^{36,89}, one used CPET⁸⁷, and another used both⁸⁸. The pulmonary involvement of the patients included in the review was moderate-severe. Three of the included papers concluded that exercise capacity was decreased in patients with PIBO⁸⁷⁻⁸⁹, and one of them found no decrease in distance traveled with the 6MW test³⁶. Only one of the included studies had a control group⁸⁷. Sixteen patients with PIBO were compared with a cohort of 14 healthy patients, and a statistically significant difference was found in the % predicted VO_2 max (PIBO: $101\% \pm 17$ vs. healthy 84 ± 15 ; $p < 0.05$).

Given these results, it seems reasonable to conclude that physical exercise is limited in patients with PIBO. The reason why this occurs is extrapolated from other chronic respiratory diseases. As happens in CF, it appears that low respiratory reversal is also related to low performance⁹⁰.

Data still needs to be published on the role of physical exercise as a treatment and what type of exercise should be prescribed for these patients. Still, extrapolating from other chronic respiratory diseases, high-intensity interval exercise seems to be a promising therapeutic option¹⁴.

Primary ciliary dyskinesia

Primary ciliary dyskinesia (PCD) is a rare genetic disease caused by alterations in the

function of the cilia. These structures are responsible for secretion clearance, so their dysfunction causes secretions to accumulate in the upper and lower airways⁹¹. PCD is characterized by recurrent respiratory infections and persistent moist cough; most patients eventually develop bronchiectasis⁹². In addition, since cilia are also present in other organs, such as the reproductive tract, a symptom in adulthood may be infertility.

There are publications on exercise limitation in patients with SCD compared to healthy subjects⁹³⁻⁹⁵. One published in 2022⁹³ evaluated maximal inspiratory pressure (MIP), maximal expiratory pressure, muscle strength, and distance traveled in the 6MW in 27 patients with PCD between 6 and 18 years old and in 28 healthy controls. All these variables were lower in the PCD group compared to controls.

The effect of a training program was not found in this literature review.

Bronchopulmonary dysplasia

BPD is one of the main complications of preterm newborns. The improvements in neonatal intensive care have increased the survival of this pathology, but its incidence is stable^{96,97}. It is defined as a chronic lung disease caused by intrauterine vascular and pulmonary developmental arrest and affects preterm newborns with low birth weight⁹⁸. These children have increased respiratory morbidity and, at the functional level, an obstructive pattern⁹⁹.

Patients with BPD may have a lower respiratory reserve and require adaptations during

physical exercise¹⁰⁰. Several papers have evaluated the response to exercise in patients with BPD. In 2020, a study was published¹⁰¹ in which the results of cycle ergometry and pulmonary function tests of children with BPD were compared with a control group. Forty-two school-aged children with BPD were included, with lower VO₂ peak, minute ventilation, and workload values compared to the control group. In addition, these children reported respiratory symptoms during exercise more frequently than healthy children. Other studies have obtained similar results, showing a lower physical condition in patients with BPD^{102,103}. However, this lack of physical condition is unclear since some works have not found these differences^{104,105}. Different reasons have been proposed as to why this limitation to exercise occurs in patients with BPD. Some studies suggest that in preterm infants, with or without dysplasia, there could be a limitation in ventilation^{106,107} as well as an alteration of respiratory dynamics during exercise¹⁰⁷.

Few studies have evaluated the impact of exercise programs^{108,109}. The only randomized clinical trial with exercise in children with BPD was carried out in Barcelona¹⁰⁹. A total of 20 patients between 4 and 6 years of age were included. The intervention group underwent an intervallic and resistance training program for 4 weeks. After completing the program, an improvement in meters walked in the 6MW was observed (316.3 ± 31.4 m vs. 376.2 ± 39.5 m; $p = 0.002$).

Although the available data on the impact of exercise programs in patients with BPD are limited, the current results suggest that it could provide benefits.

Lung transplantation

Lung transplantation is a treatment option for children with severe chronic lung disease who do not respond to other treatments or who do not have therapeutic alternatives available to them¹¹⁰. The results of pediatric transplantation have improved in recent years. Although it is a complex procedure with short and long-term risks, it can significantly enhance pediatric patients' quality of life and survival¹¹¹.

Most studies have shown a reduction in VO_2 peak¹¹²⁻¹¹⁴ in adults after lung transplantation. Studies in the pediatric population are more limited but present similar results, with a lower tolerance to physical exercise¹¹⁵⁻¹¹⁷.

A 2020 systematic review¹¹⁸ conducted in adults suggests that exercise has a beneficial effect before and after lung transplantation; however, insufficient clinical trials have demonstrated the impact of training programs in these patients. A prospective study was conducted on children, and it investigated the effect of an aerobic and resistance training program on children who had received a pulmonary or cardiac transplant¹¹⁹. Two groups were compared: one group of patients performing the training at home and the other at the hospital. The effect of the intervention was measured with the 6MW, with strength and flexibility measures. In both groups, an improvement in walking distance at 3 months and 1 year was targeted (baseline 425.7 ± 109.4 m; 3 months 500.6 ± 93.6 m, $p < 0.001$; 1 year 528.5 ± 66.6 m, $p = 0.001$). One case report involving inspiratory muscle training showed improvements in MIP, FVC, and dyspnea after lung transplantation¹²⁰. This suggests that this type of training could be a line of future research.

Given these results, controlled physical exercise should be integrated into managing patients before and after lung transplantation. Still, more research is needed on the type of training.

DISCUSSION

This work has focused on reviewing the effect of physical exercise in those pathologies where training programs have more evidence, such as asthma or CF. Current data show that training programs improve most respiratory pathologies' physical condition, muscle function, respiratory symptoms, and quality of life^{11,45,50,57,78,121}. The effect of exercise on pulmonary function is more controversial; there are insufficient data to show that it improves asthma^{45,57} or CF⁷⁸. Regarding quality of life in patients with asthma, the benefits of exercise are less conclusive. Some studies have shown no significant improvement⁴⁵, suggesting that this could be because baseline values were good and offered little capacity for improvement⁵³. However, other studies^{57,62} have observed improvements in the quality of life questionnaires. Despite some variables where the results are more controversial, the benefits and safety of physical exercise in the respiratory pathologies reviewed seem clear. In other chronic lung diseases, physical exercise also seems to play a role in their prognosis; however, with the current evidence available, more clinical trials are needed to confirm its efficacy.

To achieve the benefits of training programs, it is necessary to specify their duration, intensity, type, and dose. However, more data in the literature still needs to be on the best training program for each pathology in the

TABLE 4. Exercise recommendations for chronic respiratory pathologies

Pathology	Modality	Intensity	Frequency	Duration
Asthma	Aerobic running, bicycling, or swimming	50–75% of VO_2 max	2-3 days/week	30–40 min/session
Cystic fibrosis	Aerobic or anaerobic, or a combination of both	55–65% of maximum heart rate	3-5 days/week	20–30 min/session
Interstitial lung diseases	Aerobic + endurance	60–80% of VO_2 peak	3-5 days/week	20–60 min/session

VO_2 max: maximal oxygen consumption.

pediatric age group. Table 4 shows the type of exercise that has shown the most benefits in each pathology so far¹³.

CONCLUSION

Physical exercise is vital in managing chronic respiratory pathologies in childhood, both as a prognostic factor and as a treatment. The response to exercise in patients with chronic lung disease should be evaluated periodically with the stress tests available (CPET and 6MW) in each center. CPET also allows us to plan the training program. Physical exercise benefits symptom control, physical condition, and quality of life. However, it is necessary to know the type of training, dosage, and pattern used to achieve these effects. Combined exercise or high-intensity interval training are good options. Still, more studies with a larger sample size are needed to determine the most appropriate and safe training program for each pathology.

FUNDING

None.

CONFLICTS OF INTEREST

None.

ETHICAL CONSIDERATIONS

Confidentiality of data. The authors declare that no patient data appear in this article. In addition, the authors have acknowledged and followed the recommendations according to the SAGER guidelines, depending on the type and nature of the study.

Privacy rights and informed consent. The authors have followed their institution's confidentiality protocols, obtained informed consent from patients, and received approval from the Ethics Committee. The SAGER guidelines were followed according to the nature of the study.

Use of artificial intelligence to generate texts. The authors declare that they have not used any type of generative artificial intelligence in the writing of this manuscript or for the creation of figures, graphs, tables, or their corresponding captions or legends.

REFERENCES

- Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. *Med Sci Sports Exerc.* 2011;43:1334–59.
- Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, et al. World health organization 2020 guidelines on physical activity and sedentary behaviour. *Br J Sports Med.* 2020;54:1451–62.
- Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. *Int J Behav Nutr Phys Act.* 2010;7:40.

4. Eime RM, Young JA, Harvey JT, Charity MJ, Payne WR. A systematic review of the psychological and social benefits of participation in sport for children and adolescents: informing development of a conceptual model of health through sport. *Int J Behav Nutr Phys Act.* 2013;10:98.
5. Scheffer DD, Latini A. Exercise-induced immune system response: anti-inflammatory status on peripheral and central organs. *Biochim Biophys Acta Mol Basis Dis.* 2020;1866:165823.
6. Casuso RA, Huertas JR. Mitochondrial functionality in inflammatory pathology-modulatory role of physical activity. *Life (Basel).* 2021;11:61.
7. Xiong T, Bai X, Wei X, Wang L, Li F, Shi H, et al. Exercise rehabilitation and chronic respiratory diseases: effects, mechanisms, and therapeutic benefits. *Int J Chron Obstruct Pulmon Dis.* 2023;18:1251-66.
8. Pedersen BK, Saltin B. Exercise as medicine-evidence for prescribing exercise as therapy in 26 different chronic diseases. *Scand J Med Sci Sports.* 2015;25:1-72.
9. Pedersen BK, Saltin B. Evidence for prescribing exercise as therapy in chronic disease. *Scand J Med Sci Sports.* 2006;16:3-63.
10. Grünig E, Eichstaedt C, Barberà JA, Benjamín N, Blanco I, Bossone E, et al. ERS statement on exercise training and rehabilitation in patients with severe chronic pulmonary hypertension. *Eur Respir J.* 2019;53:1800332.
11. Sanz-Santiago V, Diez-Vega I, Santana-Sosa E, Lopez Nuevo C, Iturriaga Ramirez T, Vendrusculo FM, et al. Effect of a combined exercise program on physical fitness, lung function, and quality of life in patients with controlled asthma and exercise symptoms: a randomized controlled trial. *Pediatr Pulmonol.* 2020;55:1608-16.
12. García-Pérez-de-Sevilla G, Yvert T, Blanco Á, Sosa Pedreschi AI, Thuissard IJ, Pérez-Ruiz M. Effectiveness of physical exercise interventions on pulmonary function and physical fitness in children and adults with cystic fibrosis: a systematic review with meta-analysis. *Healthcare (Basel).* 2022;10:2205.
13. Armstrong M, Vogiatzis I. Personalized exercise training in chronic lung diseases. *Respirology.* 2019;24:854-62.
14. Gao M, Huang Y, Wang Q, Liu K, Sun G. Effects of high-intensity interval training on pulmonary function and exercise capacity in individuals with chronic obstructive pulmonary disease: a meta-analysis and systematic review. *Adv Ther.* 2022;39:94-116.
15. Johansson H, Norlander K, Hedenström H, Janson C, Nordang L, Nordvall L, et al. Exercise-induced dyspnea is a problem among the general adolescent population. *Respir Med.* 2014;108:852-8.
16. O'Donnell DE, Elbehairy AF, Berton DC, Domnik NJ, Neder JA. Advances in the evaluation of respiratory pathophysiology during exercise in chronic lung diseases. *Front Physiol.* 2017;8:82.
17. Donadio MV, Amor Barbosa M, Vendrusculo FM, Ramirez TI, Santana-Sosa E, Sanz-Santiago V, et al. Mechanisms of ventilatory limitation to maximum exercise in children and adolescents with chronic airway diseases. *Pediatr Pulmonol.* 2023;58:3293-302.
18. Donadio MV, Heinzmann-Filho JP, Vendrusculo FM, Frasson PX, Marostica PJ. Six-minute walk test results predict risk of hospitalization for youths with cystic fibrosis: a 5-year follow-up study. *J Pediatr.* 2017;182:204-9.e1.
19. Pérez M, Groeneveld IF, Santana-Sosa E, Fiuza-Luces C, Gonzalez-Saiz L, Villa-Asensi JR, et al. Aerobic fitness is associated with lower risk of hospitalization in children with cystic fibrosis. *Pediatr Pulmonol.* 2014;49:641-9.
20. Vogiatzis I, Zakhynthinos S. Factors limiting exercise tolerance in chronic lung diseases. *Compr Physiol.* 2012;2:1779-817.
21. O'Donnell DE, D'Arsigny C, Webb KA. Effects of hyperoxia on ventilatory limitation during exercise in advanced chronic obstructive pulmonary disease. *Am J Respir Crit Care Med.* 2001;163:892-8.
22. Radtke T, Crook S, Kaltsakas G, Louvaris Z, Berton D, Urquhart DS, et al. ERS statement on standardisation of cardiopulmonary exercise testing in chronic lung diseases. *Eur Respir Rev.* 2019;28:180101.
23. Arósa F, Boraitaa A, Alegria E, Alonsoa AM, Bardajia A, Lamiel R, et al. Guías de práctica clínica de la sociedad española de cardiología en pruebas de esfuerzo. *Rev Esp Cardiol.* 2000;53:1063-94.
24. Davies CT, Barnes C, Godfrey S. Body composition and maximal exercise performance in children. *Hum Biol.* 1972;44:195-214.
25. Takken T, Bongers BC, Van Brussel M, Haapala EA, Hulzebos EH. Cardiopulmonary exercise testing in pediatrics. *Ann Am Thorac Soc.* 2017;14:S123-8.
26. McArdle WD, Katch FI, Katch VL. *Exercise Physiology: Energy, Nutrition, and Human Performance.* 3rd ed. United States: Lippincott Williams and Wilkins; 1991. p. 1403.
27. McArdle WD, Katch FI, Pecher GS. Comparison of continuous and discontinuous treadmill and bicycle tests for max Vo₂. *Med Sci Sports.* 1973;5:156-60.
28. Hallstrand TS, Leuppi JD, Joos G, Hall GL, Carlsen KH, Kaminsky DA, et al. ERS technical standard on bronchial challenge testing: pathophysiology and methodology of indirect airway challenge testing. *Eur Respir J.* 2018;52:1801033.
29. Burstein DS, McBride MG, Min J, Paridon AA, Perelman S, Huffman EM, et al. Normative values for cardiopulmonary exercise stress testing using ramp cycle ergometry in children and adolescents. *J Pediatr.* 2021;229:61-9.e5.
30. Matos Casano HA, Anjum F. Six-Minute Walk Test. In: *StatPearls.* Treasure Island, FL: StatPearls Publishing; 2024. Available from: <http://www.ncbi.nlm.nih.gov/books/NBK576420> [Last accessed on 2024 Nov 12].
31. Six-Minute Walk Test in Children and Adolescents-ClinicalKey. Available from: <https://www-clinicalkey-es.bvcscm.a17.csinet.es/#!/content/playcontent/1-s2.0-s0022347607000145?returnurl=https%3A%2F%2Flinkinghub.elever.com%2Fretrieve%2Fpii%2F0022347607000145%3Fshow-all%3Dtrue&referrer=https%3A%2F%2Fbvcscm.c17.net%2F> [Last accessed on 2024 Nov 12].
32. Silva GV, Tapia PV, Torres BM, Miranda MJ, Altamira GM, Silva MF, et al. Modified six-minutes walking test in children with medical complexity and chronic lung disease. *Eur Respir J.* 2022;60 Suppl 66:1423.
33. Zuk M, Migdal A, Jagiellowicz-Kowalska D, Mazurkiewicz K, Sadel-Wieczorek A, Brzezinska-Rajszys G. Six-minute walk test in evaluation of children with pulmonary arterial hypertension. *Pediatr Cardiol.* 2017;38:754-61.
34. Yimlamai D, Freiberger DA, Gould A, Zhou J, Boyer D. Pretransplant six-minute walk test predicts peri- and post-operative outcomes after pediatric lung transplantation. *Pediatr Transplant.* 2013;17:34-40.
35. Tsopanoglou SP, Davidson J, Goulart AL, Barros MC, Dos Santos AM. Functional capacity during exercise in very-low-birth-weight premature children. *Pediatr Pulmonol.* 2014;49:91-8.
36. Zenteno D, Puppo H, González VR, Pavón TD, Vera R, Torres-Castro R, et al. Six minute walk test in children with post-infectious obliterans bronchiolitis. Its relation with spirometry. *Rev Chil Enferm Respir.* 2008;24:15-9.
37. Rajvanshi N, Kumar P, Goyal JP. Global initiative for asthma guidelines 2024: an update. *Indian Pediatr.* 2024;61:781-6.
38. Weinberger M, Abu-Hasan M. Pseudo-asthma: when cough, wheezing, and dyspnea are not asthma. *Pediatrics.* 2007;120:855-64.
39. Abu-Hasan M, Tannous B, Weinberger M. Exercise-induced dyspnea in children and adolescents: if not asthma then what? *Ann Allergy Asthma Immunol.* 2005;94:366-71.
40. Laveziana P, Lotti P, Coli C, Binazzi B, Chiti L, Stendardi L, et al. Mechanisms of dyspnoea and its language in patients with asthma. *Eur Respir J.* 2006;27:742-7.
41. Lucas SR, Platts-Mills TA. Physical activity and exercise in asthma: relevance to etiology and treatment. *J Allergy Clin Immunol.* 2005;115:928-34.
42. Villa F, Castro APBM, Pastorino AC, Santarém JM, Martins MA, Jacob CM, et al. Aerobic capacity and skeletal muscle function in children with asthma. *Arch Dis Child.* 2011;96:554-9.
43. Jones SE, Merkle SL, Fulton JE, Wheeler LS, Mannino DM. Relationship between asthma, overweight, and physical activity among U.S. High school students. *J Community Health.* 2006;31:469-78.
44. Carson KV, Chandratilleke MG, Picot J, Brinn MP, Esterman AJ, Smith BJ. Physical training for asthma. *Cochrane Database Syst Rev.* 2013;9:CD001116.
45. Wanrooij VH, Willeboordse M, Dompeling E, Van de Kant KD. Exercise training in children with asthma: a systematic review. *Br J Sports Med.* 2014;48:1024-31.

46. Lu KD, Cooper DM, Haddad F, Radom-Aizik S. Four months of a school-based exercise program improved aerobic fitness and clinical outcomes in a low-ses population of normal weight and overweight/obese children with asthma. *Front Pediatr.* 2018;6:380.

47. Andrade LB, Britto MC, Lucena-Silva N, Gomes RG, Figueroa JN. The efficacy of aerobic training in improving the inflammatory component of asthmatic children. Randomized trial. *Respir Med.* 2014;108:1438-45.

48. Zhang W, Wang Q, Liu L, Yang W, Liu H. Effects of physical therapy on lung function in children with asthma: a systematic review and meta-analysis. *Pediatr Res.* 2021;89:1343-51.

49. Abdelbasset WK, Alsubaie SF, Tantawy SA, Abo Elyazed TI, Kamel DM. Evaluating pulmonary function, aerobic capacity, and pediatric quality of life following a 10-week aerobic exercise training in school-aged asthmatics: a randomized controlled trial. *Patient Prefer Adherence.* 2018;12:1015-23.

50. Kuder MM, Clark M, Cooley C, Prieto-Centurion V, Danley A, Riley I, et al. A systematic review of the effect of physical activity on asthma outcomes. *J Allergy Clin Immunol Pract.* 2021;9:3407-21.e8.

51. Basaran S, Guler-Uysal F, Ergen N, Seydaoglu G, Bingol-Karakoç G, Ufuk Altintas D. Effects of physical exercise on quality of life, exercise capacity and pulmonary function in children with asthma. *J Rehabil Med.* 2006;38:130-5.

52. Fanelli A, Cabral AL, Neder JA, Martins MA, Carvalho CR. Exercise training on disease control and quality of life in asthmatic children. *Med Sci Sports Exerc.* 2007;39:1474-80.

53. Moreira A, Delgado L, Haahrtela T, Fonseca J, Moreira P, Lopes C, et al. Physical training does not increase allergic inflammation in asthmatic children. *Eur Respir J.* 2008;32:1570-5.

54. Effects of Aerobic Exercise-based Pulmonary Rehabilitation on Quality of Life in pediatric Asthma: A Systematic Review and Meta-Analysis-ClinicalKey. Available from: https://www-clinicalkey-es.bvcs.com.a17.csinet.es/#!/content/playcontent/1-s2.0_s0147956324001614?returnurl=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2F0147956324001614%3Fshowall%3Dtrue&referrer=https%3A%2F%2Fbvcs.com.a17.net%2F [Last accessed on 2024 Nov 10].

55. Smith JJ, Eather N, Morgan PJ, Plotnikoff RC, Faigenbaum AD, Lubans DR. The health benefits of muscular fitness for children and adolescents: a systematic review and meta-analysis. *Sports Med.* 2014;44:1209-23.

56. Muscle Fitness Cut Points for Early Assessment of Cardiovascular Risk in Children and Adolescents-Clinical Key. Available from: <https://www-clinicalkey-es.bvcs.com.a17.csinet.es/#!/content/playcontent/1-s2.0-s0022347618314665?returnurl=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2F0022347618314665%3Fshowall%3Dtrue&referrer=https%3A%2F%2Fbvcs.com.a17.net%2F> [Last accessed on 2024 Nov 13].

57. Jiang J, Zhang D, Huang Y, Wu Z, Zhang W. Exercise rehabilitation in pediatric asthma: a systematic review and network meta-analysis. *Pediatr Pulmonol.* 2022;57:2915-27.

58. Yang S, Zhang Z, Liu Y, Liu E, Luo Z. The effects of combined respiratory muscle and exercise training in children with bronchial asthma: a randomised controlled study. *J Asthma Allergy.* 2023;16:293-303.

59. Elnaggar RK. A randomized placebo-controlled study investigating the efficacy of inspiratory muscle training in the treatment of children with bronchial asthma. *J Asthma.* 2021;58:1661-9.

60. Yadav P, Jain PK, Sharma BS, Sharma M. Yoga therapy as an adjuvant in management of asthma. *Indian J Pediatr.* 2021;88:1127-34.

61. Zhang YF, Yang LD. Exercise training as an adjunctive therapy to montelukast in children with mild asthma: a randomized controlled trial. *Medicine (Baltimore).* 2019;98:e14046.

62. Khodashenas E, Bakhtiari E, Sohrabi M, Mozayani A, Arabi M, Valayati Haghghi V, et al. The effect of a selective exercise program on motor competence and pulmonary function of asthmatic children: a randomized clinical trial. *J Pediatr Perspect.* 2019;7:9711-7.

63. Latorre-Román PA, Navarro-Martínez AV, García-Pinillos F. The effectiveness of an indoor intermittent training program for improving lung function, physical capacity, body composition and quality of life in children with asthma. *J Asthma.* 2014;51:544-51.

64. Neyra AL, Ferriero AL. Fibrosis quística y sus manifestaciones respiratorias. *Pediatr Integral.* 2021;25:91-100.

65. Andersen DH. Cystic fibrosis of the pancreas and its relation to celiac disease: a clinical and pathologic study. *Am J Dis Child.* 1938;56:344-99.

66. McBennett KA, Davis PB, Konstan MW. Increasing life expectancy in cystic fibrosis: advances and challenges. *Pediatr Pulmonol.* 2022;57:S5-12.

67. Lopez A, Daly C, Vega-Hernandez G, MacGregor G, Rubin JL. Elexacaftor/tezacaftor/ivacaftor projected survival and long-term health outcomes in people with cystic fibrosis homozygous for F508del. *J Cyst Fibros.* 2023;22:607-14.

68. Shah AR, Gozal D, Keens TG. Determinants of aerobic and anaerobic exercise performance in cystic fibrosis. *Am J Respir Crit Care Med.* 1998;157:1145-50.

69. Radtke T, Hebestreit H, Gallati S, Schneiderman JE, Braun J, Stevens D, et al. CFTR Genotype and maximal exercise capacity in cystic fibrosis: a cross-sectional study. *Ann Am Thorac Soc.* 2018;15:209-16.

70. Busey JF, Fenger EP, Hepper NG, Kent DC, Kilburn KH, Matthews LW, et al. Physical adjuncts in the treatment of pulmonary diseases. A statement by the Committee on Therapy. *Am Rev Respir Dis.* 1968;97:725-9.

71. Tecklin JS, Holsclaw DS. Cystic fibrosis and the role of the physical therapist in its management. *Phys Ther.* 1973;53:386-94.

72. Ward N, Stiller K, Holland AE. Exercise and airway clearance techniques in cystic fibrosis. *Semin Respir Crit Care Med.* 2023;44:209-16.

73. Davies G, Rowbotham NJ, Smith S, Elliot ZC, Gathercole K, Rayner O, et al. Characterising burden of treatment in cystic fibrosis to identify priority areas for clinical trials. *J Cyst Fibros.* 2020;19:499-502.

74. Cerny F. Exercise and cystic fibrosis (CF) 2.0. *Pediatr Exerc Sci.* 2013;25:616-23.

75. Cox NS, Alison JA, Button BM, Wilson JW, Morton JM, Holland AE. Accumulating physical activity in at least 10-minute bouts predicts better lung function after 3-years in adults with cystic fibrosis. *ERJ Open Res.* 2018;4:00095-2017.

76. Dwyer TJ, Alison JA, McKeough ZJ, Daviskas E, Bye PT. Effects of exercise on respiratory flow and sputum properties in patients with cystic fibrosis. *Chest.* 2011;139:870-7.

77. Galassetti P, Riddell MC. Exercise and type 1 diabetes (T1DM). *Compr Physiol.* 2013;3:1309-36.

78. Radtke T, Smith S, Nevitt SJ, Hebestreit H, Kriemler S. Physical activity and exercise training in cystic fibrosis. *Cochrane Database Syst Rev.* 2022;8:CD002768.

79. Dodd JD, Barry SC, Barry RB, Gallagher CG, Skehan SJ, Masterson JB. Thin-section CT in patients with cystic fibrosis: correlation with peak exercise capacity and body mass index. *Radiology.* 2006;240:236-45.

80. Avramidou V, Hatzigorou E, Kampouras A, Hebestreit H, Kourouki E, Kirvassilis F, et al. Lung clearance index (LCI) as a predictor of exercise limitation among CF patients. *Pediatr Pulmonol.* 2018;53:81-7.

81. Hatzigorou E, Kampouras A, Avramidou V, Toulia I, Chrysochoou EA, Galogavrou M, et al. Toward the establishment of new clinical endpoints for cystic fibrosis: the role of lung clearance index and cardiopulmonary exercise testing. *Front Pediatr.* 2021;9:635719.

82. Ahmed MI, Dayman N, Blyth N, Madge J, Gaillard E. Impact of CFTR modulators on exercise capacity in adolescents with cystic fibrosis. *ERJ Open Res.* 2024;10:00687-2023.

83. Torrent-Vernetta A, Gaboli M, Castillo-Corullón S, Mondéjar-López P, Sanz Santiago V, Costa-Colomer J, et al. Incidence and prevalence of children's diffuse lung disease in Spain. *Arch Bronconeumol.* 2022;58:22-9.

84. Bush A, Cunningham S, De Blic J, Barbato A, Clement A, Epaud R, et al. European protocols for the diagnosis and initial treatment of interstitial lung disease in children. *Thorax.* 2015;70:1078-84.

85. Kavaliunaite E, Aurora P. Diagnosing and managing bronchiolitis obliterans in children. *Expert Rev Respir Med.* 2019;13:481-8.

86. Rodrigues CM, Schiwe D, Campos NE, Niederauer F, Heinemann-Filho JP. Exercise capacity in children and adolescents with post-infectious bronchiolitis obliterans: a systematic review. *Rev Paul Pediatr.* 2019;37:234.

87. Frohlich LF, Vieira PJ, Teixeira PJ, Silva FA, Ribeiro JP, Berton DC. Exercise capacity in adolescent and adult patients with post infectious bronchiolitis obliterans. *Pediatr Pulmonol*. 2014;49:911-8.

88. Mattiello R, Sarria EE, Stein R, Fischer GB, Mocelin HT, Barreto SS, et al. Functional capacity assessment in children and adolescents with post-infectious bronchiolitis obliterans. *J Pediatr (Rio J)*. 2008;84:337-43.

89. Gerbase MW, Soccia PM, Spiliopoulos A, Nicod LP, Rochat T. Long-term health-related quality of life and walking capacity of lung recipients with and without bronchiolitis obliterans syndrome. *J Heart Lung Transplant*. 2008;27:898-904.

90. Urquhart DS, Vendruscolo FM. Clinical interpretation of cardiopulmonary exercise testing in cystic fibrosis and implications for exercise counselling. *Paediatr Respir Rev*. 2017;24:72-8.

91. Wee WB, Kinghorn B, Davis SD, Ferkol TW, Shapiro AJ. Primary ciliary dyskinesia. *Pediatrics*. 2024;153:e2023063064.

92. Goutaki M, Shoemark A. Diagnosis of primary ciliary dyskinesia. *Clin Chest Med*. 2022;43:127-40.

93. Fırat M, Bosnak-Güclü M, Sismanlar-Eyüboğlu T, Tana-Aslan A. Respiratory muscle strength, exercise capacity and physical activity in patients with primary ciliary dyskinesia: a cross-sectional study. *Respir Med*. 2022;191:106719.

94. Valerio G, Giallauria F, Montella S, Vaino N, Vigorito C, Mirra V, et al. Cardiopulmonary assessment in primary ciliary dyskinesia. *Eur J Clin Invest*. 2012;42:617-22.

95. Fırat M, Boşnak-Güclü M, Şismanlar-Eyüboğlu T, Aslan AT. Aerobic exercise capacity, cough strength, posture, and depression in primary ciliary dyskinesia. *Pediatr Pulmonol*. 2023;58:73-80.

96. Doyle LW, Carse E, Adams AM, Ranganathan S, Opie G, Cheong JL, Victorian Infant Collaborative Study Group. Ventilation in extremely preterm infants and respiratory function at 8 years. *N Engl J Med*. 2017;377:329-37.

97. Enzer KG, Baker CD, Wisniewski BL. Bronchopulmonary dysplasia. *Clin Chest Med* 2024;45:639-50.

98. Pérez Tarazona S, Rueda Esteban S, Alfonso Diego J, Barrio Gómez de Agüero MI, Callejón Callejón GA, Cortell Aznar I, et al. Protocolo de seguimiento de los pacientes con displasia broncopulmonar. *Anal Pediatr Publ Oficial Asoc Esp Pediatr (AEP)*. 2016;84:61.

99. Vom Hove M, Prenzel F, Uhlig HH, Robel-Tillig E. Pulmonary outcome in former preterm, very low birth weight children with bronchopulmonary dysplasia: a case-control follow-up at school age. *J Pediatr*. 2014;164:40-5.e4.

100. Bolton CE, Bush A, Hurst JR, Kotecha S, McGarvey L. Lung consequences in adults born prematurely. *Thorax*. 2015;70:574-80.

101. Exercise Capacity in Children with Bronchopulmonary Dysplasia at School Age-ClinicalKey. Available from: <https://www-clinicalkey-es.bvcscm.a17.csinet.es/#!/content/playcontent/1-s2.0-s0954611120302420?returnurl=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2Fs0954611120302420%3Fshowall%3Dtrue&referrer=https%3A%2F%2Fbvcscm.c17.net%2F> [Last accessed on 2024 Nov 13].

102. MacLean JE, DeHaan K, Fuhr D, Hariharan S, Kamstra B, Hendson L, et al. Altered breathing mechanics and ventilatory response during exercise in children born extremely preterm. *Thorax*. 2016;71:1012-9.

103. Kilbride HW, Gelatt MC, Sabath RJ. Pulmonary function and exercise capacity for ELBW survivors in preadolescence: effect of neonatal chronic lung disease. *J Pediatr*. 2003;143:488-93.

104. Clemm H, Røksund O, Thorsen E, Eide GE, Markestad T, Halvorsen T. Aerobic capacity and exercise performance in young people born extremely preterm. *Pediatrics*. 2012;129:e97-105.

105. O'Dea CA, Logie K, Maiorana A, Wilson AC, Pillow JJ, Banton GL, et al. Increased prevalence of expiratory flow limitation during exercise in children with bronchopulmonary dysplasia. *Eur Open Res*. 2018;4:00048-2018.

106. Mitchell SH, Teague WG. Reduced gas transfer at rest and during exercise in school-age survivors of bronchopulmonary dysplasia. *Am J Respir Crit Care Med*. 1998;157:1406-12.

107. Kriemler S, Keller H, Saigal S, Bar-Or O. Aerobic and lung performance in premature children with and without chronic lung disease of prematurity. *Clin J Sport Med*. 2005;15:349-55.

108. Kim ST, Oh DW, Lee JH. Initial evidence on the impact of performance-based treadmill training on pulmonary function and physical performance in a child with bronchopulmonary dysplasia: single-subject experimental study. *Phys Occup Ther Pediatr*. 2020;40:384-94.

109. Morales Mestre N, Papaleo A, Morales Hidalgo V, Caty G, Reyhler G. Physical activity program improves functional exercise capacity and flexibility in extremely preterm children with bronchopulmonary dysplasia aged 4-6 years: a randomized controlled trial. *Arch Bronconeumol (Engl Ed)*. 2018;54:607-13.

110. Moreno Galdó A, Torrent Vernetta A. Trasplante pulmonar en niños: retos y realidades. *An Pediatr (Barc)*. 2011;74:353-5.

111. Werner R, Benden C. Pediatric lung transplantation as standard of care. *Clin Transplant*. 2021;35:e14126.

112. Sciruba FC, Owens GR, Sanders MH, Griffith BP, Hardesty RL, Paradis IL, et al. Evidence of an altered pattern of breathing during exercise in recipients of heart-lung transplants. *N Engl J Med*. 1988;319:1186-92.

113. Miyoshi S, Trulock EP, Schaefer HJ, Hsieh CM, Patterson GA, Cooper JD. Cardiopulmonary exercise testing after single and double lung transplantation. *Chest*. 1990;97:1130-6.

114. Mathur S, Reid WD, Levy RD. Exercise limitation in recipients of lung transplants. *Phys Ther*. 2004;84:1178-87.

115. Schwaiblmaier M, Reichenspurner H, Müller C, Briegel J, Fürst H, Groh J, et al. Cardiopulmonary exercise testing before and after lung and heart-lung transplantation. *Am J Respir Crit Care Med*. 1999;159:1277-83.

116. Nixon PA, Fricker FJ, Noyes BE, Webber SA, Orenstein DM, Armitage JM. Exercise testing in pediatric heart, heart-lung, and lung transplant recipients. *Chest*. 1995;107:1328-35.

117. Mangano CM, Midyat L, Freiberger D, Gauvreau K, Boyer D, Visner G, et al. Cardiac comorbidity and exercise intolerance in bilateral lung transplant recipients followed at a pediatric center. *Pediatr Cardiol*. 2024;45:123-130.

118. Hume E, Ward L, Wilkinson M, Manifield J, Clark S, Vogiatzis I. Exercise training for lung transplant candidates and recipients: a systematic review. *Eur Respir Rev*. 2020;29:200053.

119. Deliva RD, Hassall A, Manliot C, Solomon M, McCrindle BW, Dipchand AI. Effects of an acute, outpatient physiotherapy exercise program following pediatric heart or lung transplantation. *Pediatr Transplant*. 2012;16:879-86.

120. Yamaga T, Yamamoto S, Sakai Y, Ichiyama T. Effects of inspiratory muscle training after lung transplantation in children. *BMJ Case Rep*. 2021;14:e241114.

121. Dowman L, Hill CJ, Holland AE. Pulmonary rehabilitation for interstitial lung disease. *Cochrane Database Syst Rev*. 2014;10:CD006322.