

Quality standards for cryobiopsy

Arianna J. de Grauw¹, Claudia Ravaglia^{1,2}, and Venerino Poletti^{1,2,3}

¹Department of Medical Specialities, Pulmonology Unit, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy; ²Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; ³Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark

ABSTRACT

Transbronchial cryobiopsy (TBLC) is a technique on the rise in the diagnostic workup of diffuse interstitial lung diseases (DPLD), recently being included in the European Respiratory Society Guidelines as an acceptable alternative to surgical lung biopsy (SLB), which had thus far been considered the gold standard. In this article, we review what is known to optimize the procedure, including patient selection, contraindications, possible complications and transbronchial cryobiopsy technique.

Keywords: Bronchoscopy. Cryobiopsy. Interstitial lung disease. Transbronchial cryobiopsy.

*Correspondence to:
Arianna J. de Grauw
Email: arianna.degrauw@gmail.com

Received: 02-05-2024
Accepted: 08-05-2024
DOI: 10.23866/BRNRev:2024-M0107
www.brnreviews.com

INTRODUCTION

Transbronchial cryobiopsy (TBLC) is a technique on the rise in the diagnostic workup of diffuse parenchymal lung diseases (DPLD), recently being included in the European Respiratory Society Guidelines as an acceptable alternative to surgical lung biopsy (SLB)¹, which had thus far been considered the gold standard when histopathological data was deemed necessary to reach a diagnosis. Cryoprobes, long insulated catheters with blunt metal tips that rapidly cool to extremely cold temperatures via the Joule-Thomson effect, were first introduced in the late 1960s to remove endobronchial abnormal tissue from large airways by multiple freeze-thawing cycles². In time, more advanced flexible cryoprobes were developed that could be used for procedures on more peripheral tissue and eventually led to the introduction of TBLC in the late 2000s. Since then, probes have become gradually smaller (from 2.4-1.9 mm to 1.7-1.1 mm) and have also been employed in other procedures such as in endobronchial ultrasound (EBUS) mediastinal sampling³, though the scope of this article is limited to TBLC in the diagnosis of interstitial lung diseases (ILD).

TRANSBRONCHIAL CRYOBIOPSY TECHNIQUE: THE BASICS

Although the procedure is quickly gaining momentum, the technique used to perform TBLC in diffuse lung disease varies between centres. Oftentimes this is due to a varied availability of expertise and equipment. Procedure standardization is lacking⁴, as are strong randomized studies concerning the various

aspects of the procedure. It should be noted that even though standardization of certain aspects of the procedure would likely guarantee a higher quality standard in TBLC, it is highly unlikely that a single approach will be reached in clinical practice since some elements depend on local organization and expertise and, as discussed further on, some strategies increase diagnostic yield, but also risk of complications, thus opening a debate regarding the risk/benefit ratio of those approaches.

In most centres, TBLC is performed via flexible bronchoscopy in patients intubated with an endotracheal tube or rigid bronchoscope under deep sedation or general anesthesia². The probe is advanced to the parenchymal periphery under fluoroscopic guidance to ensure suitable probe-to-pleura distance. When the target is reached, the probe is activated for several seconds and, as the tip freezes during activation, surrounding parenchyma freezes and adheres to the tip of the probe. The flexible bronchoscope and probe are then extracted *en bloc* from the airway. The tip of the probe is placed in saline solution to ensure thawing of the sample, which then should be very delicately detached from the probe to guarantee an artefact-free sample. The sample is then fixated in formalin to be processed.

PATIENT SELECTION

Accurate patient selection is pivotal in ensuring an acceptable risk/benefit ratio. To begin with, a multidisciplinary discussion should determine whether the procedure is required for a correct diagnosis¹. If so, the patient must

be considered fit to undergo deep sedation or general anaesthesia, antiplatelet and/or anti-coagulation therapy should be discontinued as appropriate⁵ and contraindications should be considered.

Bleeding diathesis increases the risk of major bleeding and therefore international normalized ratio (INR) ≥ 1.50 , platelets $<50.000/\text{mmc}$ and impossibility to discontinue anticoagulation or antiplatelet drugs are considered the only absolute contraindications to the procedure⁶. Traditionally, forced vital capacity (FVC) $< 50\%$ and/or diffusing lung capacity for carbon monoxide (DLCO) $< 35\text{-}30\%$, and/or body mass index (BMI) > 35 , and/or age above 75 years, and/or pulmonary hypertension (systolic pulmonary artery pressure $> 40\text{-}45 \text{ mmHg}$), and/or clinically significant cardiac disease, and/or coagulation disease have been considered relative contraindications to the procedure^{2,7,8}. In obese patients, the main issues appear to be the difficulty in airway management and ventilation⁷ and a higher risk of bleeding⁹, while worse lung function tests and pulmonary hypertension potentially expose the patient to a higher morbidity and mortality risk in case of pneumothorax and bleeding respectively. Cardiac disease entails a generally higher anaesthesiologic risk.

It must be noted that, aside from bleeding diathesis, all contraindications are relative and patients with these traits have mostly been excluded from studies on a theoretical basis. In fact, a recent study suggests that TBLC appears safe in those in whom SLB is at high risk of complications according to their age, BMI, lung impairment, and cardiac comorbidities¹⁰. Furthermore, the mortality

rate of TBLC is very low (1.3% 90-day absolute mortality rate¹¹, 0.3% 60-day mortality rate due to adverse events⁸), especially when compared to SLB which has a general 2-6% 90-day mortality rate, with a 30-day mortality rate as high as 18.8% in patients ultimately diagnosed with idiopathic pulmonary fibrosis (IPF)¹².

BIOPSY TARGET SELECTION

In DPLD, biopsy target selection is guided by CT scan images and procedural factors, although the optimal target selection for biopsy remains unclear. As the cryoprobe samples peripheral lung tissue, areas with the most extensive sub-pleural lesions should be targeted and more fibrotic lesions should be avoided, though to date no studies prove the effect of these criteria on diagnostic yield.

The right lower lobe is the most convenient for accessing and placing a bronchial balloon or blocker and as DPLD often begins in the lower lobes this appears to be the most frequently chosen target². In target selection, a reportedly higher risk of pneumothorax with TBLC in the middle lobe¹³ and upper lobes, especially the left upper lobe¹⁴ should also be taken into account.

In series, there is a significant variability in the number of samples and whether they are obtained in a single segment, multiple segments within the same lobe, or multiple lobes of the same lung. Performing two biopsies with a cryoprobe may be associated with an increased diagnostic yield in DPLD if these samples are obtained from two different segments¹⁵, with diagnostic yield increasing from

69% to 96% with a second biopsy from a different segment¹⁶. Therefore, when feasible, TBLC should be performed in two different segments (either of the same lobe or of different lobes).

Cone beam CT guidance and novel navigation systems are being studied as a means to increase diagnostic accuracy of TBLC^{17,18}.

ANAESTHESIA AND AIRWAY MANAGEMENT

Cryobiopsy can be performed via flexible bronchoscopy without advanced airway management, through laryngeal mask, endotracheal tube and rigid bronchoscopy. Most series report rigid bronchoscopy or intubation with an endotracheal tube as it assures a rapid re-entry into the airway after each biopsy is performed and allows easier management of bleeding. Deep sedation or general anaesthesia is warranted to increase patient tolerance and reduce cough which can facilitate pneumothorax and complicate efforts to control bleeding⁸. General anaesthesia requires positive pressure or jet ventilation, as the patient is incapable of maintaining adequate spontaneous ventilation, potentially increasing the risk of pneumothorax as opposed to deep sedation, though no studies have directly compared these two strategies.

CRYOPROBE SIZE AND FREEZE-TIME

Sample volume and absence of artefacts are the main improvements of cryobiopsies in comparison to transbronchial forceps biopsies,

ensuring a higher diagnostic yield in DPLP¹⁹. The size of the cryobiopsy histological samples influences the diagnostic yield and a sample size of five mm in diameter is suggested as sufficient²⁰. Thus, determining how to obtain a satisfactory-sized sample is key.

New single-use cryoprobes have been developed with outer diameters of 1.1 mm, 1.7 mm and 2.4 mm to replace the previous re-usable 1.9 mm and 2.4 mm probes. A recent study has shown no statistically significant difference between the 1.9 mm and 1.7 mm probes in terms of diagnostic yield (both pathological and multidisciplinary), adverse events (bleeding and/or pneumothorax) and sampling adequacy (alveolated tissue, artefacts and biopsy size)²¹. The smaller 1.1 mm cryoprobe has thus far been used mainly to sample peripheral lesions²² but has been proven feasible and safe also in diffuse lung diseases²³, though data concerning diagnostic yield in DPLD is lacking.

In animal studies, there is significant correlation between cryobiopsy size and probe activation time, with a biopsy area of four–five mm² after two seconds of 1.9 mm cryoprobe activation and up to seven–nine mm² after a five-second activation²⁴. According to animal studies, the optimal TBLC freezing time with a 1.9 mm probe is initially three seconds, as it is associated with minimal complications and large artefact-free biopsies²⁴ but freeze time up to seven–ten seconds is reported²¹ and cryoprobe size and required freezing time are inversely proportional, with no definitive studies on probe activation time in TBLC. Freezing time is the main factor determining biopsy size², with recent evidence suggesting probe size does not affect diagnostic

yield or sample size²¹. It should be noted that, especially in fibrotic areas, resistance to cryoprobe sampling can be increased, thus not allowing long freeze times.

In conclusion, we agree with the authors' suggested approach of using a 1.7 mm probe to obtain a sample of at least five mm in size, by using a freeze-time around six-eight seconds²¹, though further research is needed.

PROBE TO PLEURA DISTANCE

The main adverse events of cryobiopsy are bleeding and pneumothorax and both events appear linked to the probe-to-pleura distance. The risk of bleeding is thought to be greater for biopsies obtained in the more proximal regions of the peripheral lung, where vessels are not protected by cartilaginous rings and have not yet divided into terminal branches, while pneumothorax results from a biopsy so peripheral that in performing it the visceral pleura has been damaged and air is consequently allowed to enter the pleural space from within the lung. Optimal cryoprobe placement is of paramount importance in balancing these two risks, but more importantly in obtaining an adequate sample, as it is also pivotal in determining diagnostic yield.

The probe-to-pleura distance is generally estimated visually in fluoroscopy, with tactile feedback dampened compared to traditional transbronchial biopsies (TBB) using forceps. In fact, using fluoroscopy has been proven to reduce the risk of pneumothorax²⁵. Lateral airways are preferable, as they allow the probe to intersect the pleura perpendicularly reducing overlap.

Reported probe-to-pleura distances vary from within one cm from the pleura to between one and two cm from the pleura. Ravaglia et al.²¹ reported a diagnostic yield of 93.3-100% using a probe-to-pleura distance of one cm, with 32% incidence of pneumothorax and 15% requiring drainage, as compared to a diagnostic yield of 80% in a study by Kropsky et al.²⁶ with a one-two cm probe-to-pleura distance, with no pneumothorax cases requiring drainage. It can be inferred that sampling immediately subpleural parenchyma potentially increases diagnostic yield in DPLD (although no direct comparison between probe-to-pleura distancing has been described), but a higher risk of pneumothorax is the price to pay. The CHEST Guideline and Expert Panel Report suggests biopsy with the tip of the cryoprobe located one cm from the pleura²⁷.

MANAGEMENT OF COMPLICATIONS: BLEEDING AND PNEUMOTHORAX

To reach a high-quality standard in cryobiopsy sampling, appropriate prevention and management of complications is key, especially considering the potential risk of major bleeding. The main technique used to control bleeding is routine placement of bronchial blockers proximal to the biopsied segment^{7,25}. Before performing the biopsy, it should be verified that the blocker completely seals the bronchus when inflated. The bronchial blocker is then inflated after each biopsy to control emergent haemorrhage while the bronchoscope is out of the airway and deflated under visual control after the bronchoscope has been reintroduced. In the event of significant bleeding, the blocker can be

reinflated to tamponade the haemorrhage while at the same time protecting the rest of the lungs from blood overflow. Bronchial blockers can easily be inserted into the rigid bronchoscope, but have also been placed externally to an endotracheal tube²⁸ and with a laryngeal mask²⁹.

Management of pneumothorax entails erect X-rays and clinical monitoring to assess presence and entity of air in the pleural space. X-rays can be performed routinely (for example two hours after the procedure) and/or in case of symptoms suggesting pneumothorax (chest pain, dyspnoea). Providing oxygen (> 28%) lowers the partial pressure of nitrogen, which may accelerate the rate of absorption of air from the pleural cavity³⁰. No specific guideline regarding when to drain cryobiopsy-related pneumothorax exists as existing guidelines for spontaneous pneumothorax are mostly used in deciding the appropriate treatment. Importantly, pneumothorax after TBLC always affects a pathological lung, with a lower likelihood of spontaneous recovery. This should be taken into account when evaluating chest drainage in these patients.

CHALLENGES AND FUTURE

Transbronchial cryobiopsy is a technique on the rise in the diagnosis of ILD. Though many studies have been conducted and published, methodological concerns have been raised and wide variation in procedure limit comparability between studies and the possibility to pool results, which would be convenient as studies often comprise a limited number of patients/procedures. Improving the quality of reports

and working towards randomized controlled trial level evidence is pivotal to optimize the procedure and further prove its strength and safety in the diagnosis of ILD.

REFERENCES

- Korevaar DA, Colella S, Fally M et al. European Respiratory Society guidelines on transbronchial lung cryobiopsy in the diagnosis of interstitial lung diseases. *Eur Respir J*. 2022;60:2200425.
- Lentz RJ, Argento AC, Colby TV et al. Transbronchial cryobiopsy for diffuse parenchymal lung disease: a state-of-the-art review of procedural techniques, current evidence, and future challenges. *J Thorac Dis*. 2017;9:2186–2203.
- Poletti V, Petrarulo S, Piciucchi S et al. EBUS-guided cryobiopsy in the diagnosis of thoracic disorders. *Pulmonology*. 2024; S2531-0437(23)00223-4.
- Hetzell J, Maldonado F, Ravaglia C et al. Transbronchial Cryobiopsies for the Diagnosis of Diffuse Parenchymal Lung Diseases: Expert Statement from the Cryobiopsy Working Group on Safety and Utility and a Call for Standardization of the Procedure. *Respiration*. 2018;95:188–200.
- Pathak V, Allender JE, Grant MW. Management of anticoagulant and antiplatelet therapy in patients undergoing interventional pulmonary procedures. *Eur Respir Rev*. 2017;26: 170020.
- Colella S, Haentschel M, Shah P et al. Transbronchial Lung Cryobiopsy in Interstitial Lung Diseases: Best Practice. *Respiration*. 2018;95:383–91.
- Casoni GL, Tomassetti S, Cavazza A et al. Transbronchial Lung Cryobiopsy in the Diagnosis of Fibrotic Interstitial Lung Diseases. *PLoS One*. 2014; 9:e86716.
- Ravaglia C, Bonifazi M, Wells AU et al. Safety and Diagnostic Yield of Transbronchial Lung Cryobiopsy in Diffuse Parenchymal Lung Diseases: A Comparative Study versus Video-Assisted Thoracoscopic Lung Biopsy and a Systematic Review of the Literature. *Respiration*. 2016;91:215–27.
- Taverner J, Lucena CM, Garner JL et al. Low bleeding rates following transbronchial lung cryobiopsy in unclassifiable interstitial lung disease. *Respirology*. 2024.
- Bondue B, Schlossmacher P, Allou N et al. Trans-bronchial lung cryobiopsy in patients at high-risk of complications. *BMC Pulm Med*. 2021;21:135.
- Hackner K, Stadler A, Schragel F et al. Transbronchial lung cryobiopsy: prospective safety evaluation and 90-day mortality after a standardized examination protocol. *Ther Adv Respir Dis*. 2022;16:175346662210775.
- Kreider ME, Hansen-Flaschen J, Ahmad NN et al. Complications of Video-Assisted Thoracoscopic Lung Biopsy in Patients with Interstitial Lung Disease. *Ann Thorac Surg*. 2007;83:1140–4.
- Samitas K, Kolilekas L, Vamvakaris I et al. Introducing transbronchial cryobiopsies in diagnosing diffuse parenchymal lung diseases in Greece: Implementing training into clinical practice. *PLoS One*. 2019;14:e0217554.
- Herout V, Heroutova M, Merta Z et al. Transbronchial biopsy from the upper pulmonary lobes is associated with increased risk of pneumothorax – a retrospective study. *BMC Pulm Med*. 2019;19:56.
- Ravaglia C, Wells AU, Tomassetti S et al. Diagnostic yield and risk/benefit analysis of trans-bronchial lung cryobiopsy in diffuse parenchymal lung diseases: a large cohort of 699 patients. *BMC Pulm Med*. 2019;19:16.
- Ravaglia C, Wells AU, Tomassetti S et al. Transbronchial Lung Cryobiopsy in Diffuse Parenchymal Lung Disease: Comparison between Biopsy from 1 Segment and Biopsy from 2 Segments - Diagnostic Yield and Complications. *Respiration*. 2017;93:285–92.
- Kronborg-White S, Bendstrup E, Gori L et al. A pilot study on the use of the super dimension navigation system for optimal cryobiopsy location in interstitial lung disease diagnostics. *Pulmonology*. 2023;29:119–23.

18. Benn BS, Romero AO, Bawaadam H et al. Cone Beam CT Guidance Improves Transbronchial Lung Cryobiopsy Safety. *Lung.* 2021;199:485–92.
19. Freund O, Wand O, Schneer S et al. Transbronchial Cryobiopsy Is Superior to Forceps Biopsy for Diagnosing both Fibrotic and Non-Fibrotic Interstitial Lung Diseases. *Respiration.* 2023;102:852–60.
20. Hetzel J, Maldonado F, Ravaglia C et al. Transbronchial Cryobiopsies for the Diagnosis of Diffuse Parenchymal Lung Diseases: Expert Statement from the Cryobiopsy Working Group on Safety and Utility and a Call for Standardization of the Procedure. *Respiration.* 2018;95:188–200.
21. Ravaglia C, Sultani F, Piciucchi S et al. Diagnostic yield and safety of transbronchial lung cryobiopsy for diffuse parenchymal lung diseases diagnosis: Comparison between 1.7-mm and 1.9-mm probes. *Pulmonology.* 2023; S2531-0437(23)00081-8.
22. Oki M, Saka H, Kogure Y et al. Ultrathin bronchoscopic cryobiopsy of peripheral pulmonary lesions. *Respirology.* 2023;28:143–51.
23. Thiboutot J, Illei PB, Maldonado F et al. Safety and Feasibility of a Sheath Cryoprobe for Bronchoscopic Transbronchial Biopsy: The FROSTBITE Trial. *Respiration.* 2022;101:1131–38.
24. Ing M, Oliver RA, Oliver BGG et al. Evaluation of Transbronchial Lung Cryobiopsy Size and Freezing Time: A Prognostic Animal Study. *Respiration.* 2016;92:34–9.
25. Dhooria S, Mehta RM, Srinivasan A et al. The safety and efficacy of different methods for obtaining transbronchial lung cryobiopsy in diffuse lung diseases. *Clin Respir J.* 2018;12:1711–20.
26. Kropski JA, Pritchett JM, Mason WR et al. Bronchoscopic Cryobiopsy for the Diagnosis of Diffuse Parenchymal Lung Disease. *PLoS One.* 2013;8:e78674.
27. Maldonado F, Danoff SK, Wells AU et al. Transbronchial Cryobiopsy for the Diagnosis of Interstitial Lung Diseases. *Chest.* 2020;157:1030–42.
28. Hohberger LA, DePew ZS, Utz JP et al. Utilizing an Endobronchial Blocker and a Flexible Bronchoscope for Transbronchial Cryobiopsies in Diffuse Parenchymal Lung Disease. *Respiration.* 2014;88:521–2.
29. Sastre JA, Cordovilla R, Jiménez MF et al. Management of a transbronchial cryobiopsy using the i-gel® airway and the Arndt endobronchial blocker. *Can J Anaesth.* 2014;61:886–8.
30. Currie GP, Alluri R, Christie GL et al. Pneumothorax: an update. *Postgrad Med J.* 2007;83:461–5.