

Obese Asthma Syndrome, Glucocorticoids, and Vitamin D: Mechanisms and Implications

Marina Bantulà, PhD¹, César Picado, MD, PhD^{1,2,3}, and Ebymar Arismendi, MD, PhD^{1,2,3*}

¹August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clinic, Universitat de Barcelona; ²Department of Pneumology, Hospital Clinic; ³Centre for Biomedical Investigation in Respiratory Diseases (CIBERES). Barcelona, Spain

ABSTRACT

The obese asthma syndrome (OAS) is characterized by increased airway inflammation and impaired lung function. Obesity-induced inflammation, characterized by elevated pro-inflammatory cytokines and reduced anti-inflammatory adipokines, contributes to airway inflammation and asthma symptoms. Asthmatic patients with obesity often have a poor response to inhaled corticosteroids (ICS), which are the mainstay of asthma treatment. They achieve less asthma control, more hospitalizations, and experience a poorer quality of life. The detrimental effects of obesity on lung function and the additive or synergistic effects of systemic inflammation contribute to this reduced response to glucocorticoids. Additionally, studies have suggested a potential association between vitamin D deficiency, obesity, and asthma exacerbations. Low vitamin D levels have also been linked to glucocorticoid resistance, while in vitro evidence suggests that vitamin D can enhance the effectiveness of glucocorticoids. Weight loss through bariatric surgery shows promising results in improving asthma control and reducing airway inflammation.

Keywords: Airway. Asthma. Inflammation. Inflammosome. Obesity.

*Correspondence to:
Ebymar Arismendi
E-mail: earismen@clinic.cat

Received in original form: 08-06-2023
Accepted in final form: 04-07-2023
DOI: 10.23866/BRNRev.2023-M0088
www.brnreviews.com

INTRODUCTION

The association between obesity and asthma, referred to as “Obese Asthma Syndrome” (OAS) has been widely evaluated in recent years. Several clinical, epidemiological and experimental studies have identified pathways that could link the two processes, including systemic inflammation, lung function alterations, metabolic dysregulation, microbiome changes, and differences in epigenetic/genomic regulation¹.

Asthma and obesity are two widespread epidemics impacting the developed world. The connection between obesity and both asthma and severe asthma seems to depend on weight, indicating a causal and likely reciprocal relationship. In obesity, the increased expression of various mediators that intensify and spread inflammation is considered the culprit of obesity-related inflammation. The consequent regulatory effects of the immunomodulatory pathways involved in both conditions have been suggested as one of the mechanisms through which obesity increases the risk and severity of asthma².

In airway inflammatory disorders, inhaled corticosteroids (ICS) are the mainstay of therapy. However, up to 50% of asthmatics may not respond well to ICS, and up to 25% of patients with difficult-to-control asthma may not respond well to oral glucocorticoids³. This makes glucocorticoid hyporesponsiveness in asthma a challenging healthcare problem associated with significant morbidity and life-threatening disease progression. Specifically, in the asthma with obesity phenotype, a reduction in clinical response to inhaled glucocorticoids has been described^{4,5}.

Low serum vitamin D levels have been reported in obese individuals and have been found associated with asthma exacerbations⁶. Moreover, an inverse correlation between serum vitamin D concentrations with forced expiratory volume in one second (FEV₁) and body mass index (BMI) has been reported⁷. Vitamin D has been acknowledged to influence different functions with regard to the immune, nervous, cardiovascular and endocrine systems^{8,9}. Vitamin D receptors (VDRs) are expressed in a plethora of tissues and cells, while the pleiotropic actions of vitamin D in non-skeletal outcomes have become increasingly recognized¹⁰.

OBSESE ASTHMA SYNDROME (OAS)

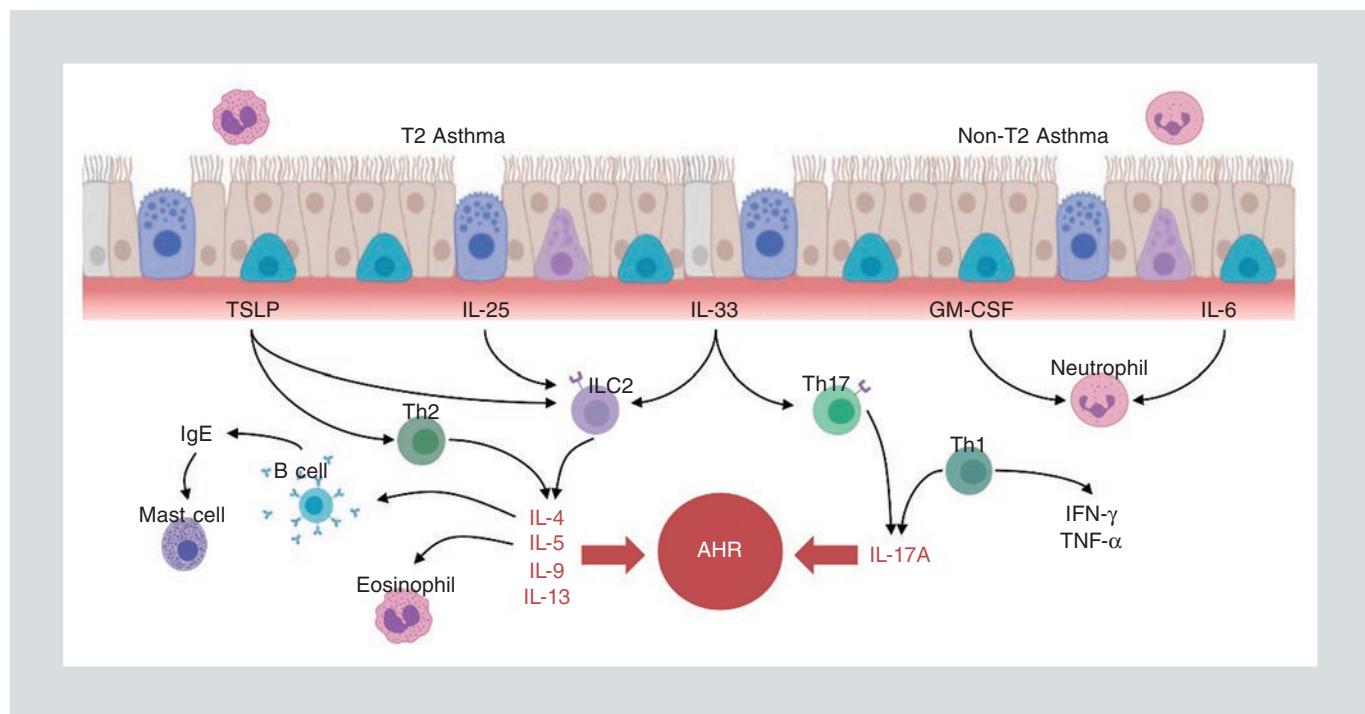
Asthma is a common chronic airway disease characterized by variable airflow limitation resulting from the combination of airway narrowing, airway hypersensitivity, airway wall thickening, and increased mucus hypersecretion. Airway narrowing results from both chronic inflammation and airway remodeling. Asthma is a heterogeneous disease with several distinct clinical presentations (phenotypes) and complex pathophysiological mechanisms (endotypes)¹¹.

Several studies have corroborated the existence of excess risk of developing asthma in obese subjects compared to subjects not overweight, regardless of gender or age¹²⁻¹⁴. Obesity is the consequence of excessive body fat accumulation due to an imbalance of energy intake and energy expenditure¹⁵. Diagnosis of obesity is usually established by assessing a BMI ≥ 30 kg/m².

The complexity of the OAS is exacerbated by the presence of more than one (or many) phenotypes. Two main sub-phenotypes of OAS have

been described according to age: 1. allergic asthma in children with obesity, which worsens pre-existing asthma, and 2. an often non-allergic, late-onset asthma developing as a consequence of obesity¹⁶. Asthma in the latter group is more difficult to control, it impairs lung function, requires more treatments with limited therapeutic effects, and leads to more frequent exacerbations than the non-obese asthma population¹⁷⁻²⁰.

Obesity has an impact on the ventilatory function of these patients. Among adults, elevated body weight is linked to a small decrease in FEV₁ and forced vital capacity (FVC), while the FEV₁/FVC ratio typically remains unchanged or slightly elevated. These changes are accompanied by reductions in lung volumes, such as functional residual capacity (FRC), alterations that characterize the so-called restrictive ventilatory defect. In addition, obesity is associated with increased airway hyperresponsiveness (AHR)²¹.


Inflammation in OAS

Concerning inflammation, the excessive accumulation of adipose tissue in subjects with obesity results in an increased production of pro-inflammatory cytokines (interleukin [IL]-1 β , IL-6, interferon- γ [IFN- γ], tumor necrosis factor [TNF]- α) and adipokines such as leptin, while there is a reduced release of adiponectin, a cytokine with anti-inflammatory properties². There is a hypothesis suggesting that the persistent low-grade systemic inflammation observed in obesity leads to the release of pro-inflammatory substances from the inflamed adipose tissue. This phenomenon, via additive or synergistic mechanisms, is believed

to increase the systemic and airway inflammation that underlies asthma².

Asthma has been classified, depending on the historical moment and the knowledge available, as allergic and non-allergic, eosinophilic, and non-eosinophilic, and type 2 (T2) high and T2 low or its equivalent non-T2, regarding the inflammatory profile^{18,19,22} (Fig. 1). T2 asthma with eosinophilia is a common endotype in asthma, which can occur with and without any demonstrated allergies. T2 asthma with allergy is the most common asthma endotype with an early onset. Eosinophilic non-allergic asthma is in most cases a moderate to severe, late-onset disease frequently associated with chronic rhinosinusitis and nasal polyps. Type 2 immune responses involve T helper (Th)-2 cells, innate lymphoid cells (ILC)-2, immunoglobulin E-secreting B cells (IgE), natural killer T (NK-T) cells, mast cells, basophils, eosinophils, and their cytokines. Th2 cells produce various cytokines such as IL-4, IL-5, IL-9, and IL-13²³⁻²⁵. Non-eosinophilic asthma has been described mostly in adults and rarely in children and includes neutrophilic and paucigranulocytic asthma²⁶. Th1 and Th17 are the subsets of cells that produce IL-17, IL-21, and IL-22, the dominant cytokines in non-T2 asthma^{27,28}.

Several studies have evaluated the cell-dominant pattern of airway inflammation in asthma patients with and without associated obesity. Data from these studies support that obesity is associated with a neutrophil-dominant rather than an eosinophil-dominant inflammatory pattern in the airway lumen^{29,30}. There are, however, some discrepancies with respect to the type of airway inflammation associated with the obese phenotype. Some cluster analyses have shown that the association between

FIGURE 1. Asthma endotypes. T2 immune responses involves T helper (Th)-2 cells, innate lymphoid cells (ILC)-2, eosinophils, and their cytokines (IL-4, IL-5, IL-9 and IL-13). Cytokine production is controlled by alarmins, such as IL-25, IL-33 and thymic stromal lymphopoietin (TSLP). T2 asthma could be allergic (when immunoglobulin E (IgE)-producing B secreting cells and mast cells are present) or non-allergic. Non-T2 asthma is mediated by type 1 inflammation where Th1 and Th17 release type 1 cytokines (IFN- γ , TNF- α , IL-17A) and neutrophils are present in the airway lumen. Pro-inflammatory cytokines in both T2 and non-T2 asthma trigger airway hyperresponsiveness (AHR).

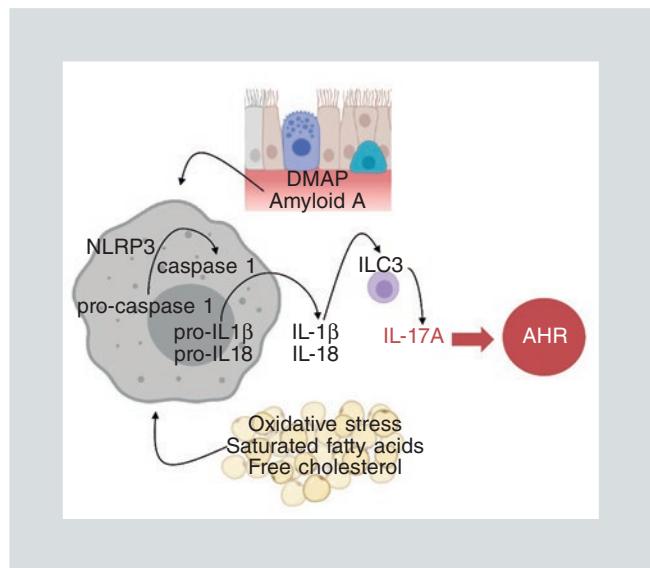
Adapted from figure 1 in reference 2.

obesity and neutrophilic inflammation is more common in women¹⁹. However, other studies have not found such an association between obesity and neutrophilic airway inflammation in adults with asthma^{31,32}.

The abundant neutrophil concentration is associated with increased levels of IL-17A, a cytokine involved in neutrophil recruitment to the airways^{29,30}. Data from animal models also support a link between IL-17A and OAS. Obese mice typically exhibit innate AHR, but this AHR is not observed when the animals are IL-17A deficient³³. In the lungs of obese mice, increased IL-17A, producing chemokine receptor 6 (CCR6+) in ILC3, was found associated with AHR and neutrophilic

inflammation³³. Obese mice with a deletion of the TNF- α receptor (TNFR2) were protected against innate AHR and presented reduced levels of IL-17 in comparison with controls³⁴. Interestingly, the relative reduction of eosinophil numbers with respect to neutrophils in the airway secretions of obese asthmatics (OA) contrasts with the higher eosinophil counts found in the airway submucosa in obese versus lean severe asthmatics^{29,35}. Similar to IL-17, sputum IL-5 and IL-25 levels have been found to be significantly higher in OA compared to their lean counterparts. In contrast, neither IL-4 nor IL-13 sputum levels were found associated with BMI in asthma patients²⁹. Two hypotheses have been suggested to explain the apparent paradox represented by

the reduced presence of eosinophils in sputum versus elevated eosinophilia in submucosa: 1. Survival of eosinophils in the airway is reduced in OAS, and 2. Eosinophils are retained in the submucosa and do not migrate to the airway lumen. The second hypothesis appears to be supported by studies reporting that more eosinophils are recruited to the lungs of obese patients with asthma compared with non-obese patients with asthma³⁶. Furthermore, it is unlikely that eosinophils fail to survive within the airway lumens of OA because IL-5, a well-known eosinophil survival factor, is elevated in the sputum of obese versus lean severe asthmatics^{29,35}. This observation is interesting because some severe OA may have an eosinophilic (in airway submucosa) non-T2 dominant type of asthma, and therefore may benefit from eosinophil-targeted therapeutics that might be excluded if attending only sputum results. The OAS is also associated with the presence of increased interleukin levels, such as TNF- α and IL-1 β in the lung, even in the absence of an antigenic challenge³⁶. TNF- α expression increased in peripheral blood mononuclear cells (PBMCs) in parallel with BMI increase in subjects with asthma³⁸.


Another mechanism that also accounts for neutrophilic airway inflammation in asthma is inflammasome activation in M1 macrophages. The nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome is an intracellular multiprotein complex that facilitates the autoactivation of the pro-inflammatory cysteine protease caspase-1. Then, the activated caspase-1 cleaves pro-IL-1 β and pro-IL-18 into their mature forms³⁹. IL-1 β is found elevated in the blood of obese individuals⁴⁰ and was found to promote Th17

cell-dependent inflammation³⁹. NLRP3 inflammasome can be activated by fatty acids via toll-like receptor 4 (TLR4) and increased sputum concentrations of IL-1 β and increased NLRP3 and TLR4 expression in sputum cells have been reported in obese versus non-OA patients^{41,42}. A recent paper reported that obesity induced by a high-fat diet in mice triggered the activation of an NLRP3 inflammasome in M1 macrophages resident on adipose tissue and in the lungs, resulting in an amplification of IL-1 β production, the subsequent ILC3 activation, and IL-17 secretion, which in turn facilitates AHR in these patients⁴³; this is a novel mechanism that has not been previously linked with airway disease³⁷ (Fig. 2).

Bariatric surgery and inflammation

Bariatric surgery is considered the most effective and sustained long-term treatment of severe obesity. Several studies have found significant improvements in asthma control, asthma severity, medications required, hospitalizations, sleep, exercise capacity and lung function tests^{44,45}.

A recent study sought to determine if adipose tissue inflammation was associated with increased inflammation in the airway of OA patients and whether weight loss after bariatric surgery would simultaneously improve metabolic and airway inflammation. In the asthmatic subjects with obesity, concentrations of the pro-inflammatory cytokines IL-6 and IL-8 decreased with weight loss. Changes in leptin and adiponectin protein levels in airways were similar to those found in adipose tissue: at baseline, leptin levels were higher,

FIGURE 2. Inflammasome activation. In asthma, NLR family pyrin domain containing 3 (NLRP3) inflammasome is activated by danger-associated molecular patterns (DAMP) and serum amyloid A protein, produced by epithelial cells exposed to microbes. Moreover, NLRP3 is activated by saturated fatty acids, as well as free cholesterol, and oxidative stress, which are present in adipose tissue in obesity. The activation of NLRP3 in M1 macrophages resident on adipose tissue and in the lungs, resulting in an amplification in IL-1 β and IL-18 production, the subsequent innate lymphoid cell (ILC)-3 activation, and IL-17A secretion, which in turn facilitates airway hyperresponsiveness (AHR) in patients.

Adapted from figure 1 in reference 2.

and adiponectin lower in bronchoalveolar lavage fluid (BALF) of participants with asthma compared with control subjects. AHR was more significantly related to visceral fat leptin than to BMI. The authors concluded that the high levels of adipokines produced in visceral adipose tissue in OAS are associated with airway reactivity but not with airway inflammation⁴⁶. Other authors found no significant effect on serum cytokine levels in OA subjects after bariatric surgery. However, serum TNFR2, ezrin, MCP-1, and IL-18 levels significantly decreased at the six–twelve-month post-bariatric surgery follow-up in non-asthmatic obese subjects⁴⁷, but there was no

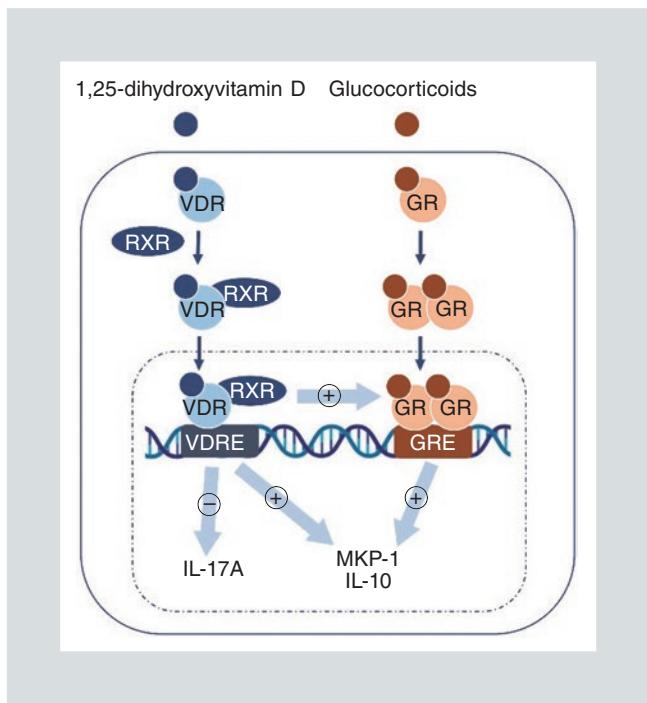
effect on other cytokines such as IL-8, IL-9, TNF- α , TGF- β 1, and GM-CSF^{47,48}.

Blood adiponectin concentration decrease in a negative relationship to increases in BMI^{49,50}. Poor asthma control⁵¹ and asthma severity^{52,53} are both associated with lower adiponectin levels. Studies assessing the effects of bariatric surgery found that weight loss was associated with the recovery of serum adiponectin levels in obese⁵⁴ and OA patients^{48,55}. Interestingly, the balance of the adiponectin/leptin inflammatory ratio leaned towards normal in asthmatic patients compared with OA and non-asthmatic subjects, in whom the ratio tended towards the pattern favouring inflammation. The adiponectin/leptin ratio negatively correlated with BMI. Weight loss was associated with a normalization of the ratio in obese subjects⁴⁷.

With respect to markers of allergic inflammation, no changes in submucosal cell counts of eosinophils, neutrophils, B cells, macrophages, CD4 $^+$ T cells or CD8 $^+$ T cells were found with weight loss following bariatric surgery. In contrast, mast cells decreased significantly in the same patients⁵⁶.

GLUCOCORTICOIDS

Glucocorticoids have anti-allergic, anti-inflammatory, and immunosuppressive properties, in addition to regulating the biosynthesis and metabolism of key nutrients such as sugars, fats, and proteins⁵⁷. As one of the most effective medications to prevent and treat asthma, glucocorticoids primarily act on airway epithelium to inhibit airway inflammation^{57,58}. At a cellular level, the anti-inflammatory effect of glucocorticoids is exerted through a reduction


in both the cell number and the function of inflammatory cells in the airways, including eosinophils, T-lymphocytes, mast cells, and dendritic cells⁵⁹.

Glucocorticoids diffuse across the cell membrane and bind to glucocorticoid receptors (GR) in the cytoplasm⁵⁹. The widespread distribution of the GR within the body explains the efficacy of glucocorticoid treatment in most patients and in numerous inflammatory diseases^{58,60}. In the nucleus, the GR binds to the glucocorticoid response elements (GRE) and activates (transactivation) or inhibits (transrepression) gene transcription depending on the type of GRE sequence³. Glucocorticoids induce anti-inflammatory genes such as IL-10, annexin 1, mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1), inhibitor of nuclear factor kappa B (NF κ B), lipocortin-1, IL-1 receptor antagonist, glucocorticoid-induced leucine zipper (GILZ), and the RNA-binding protein tristetraprolin (TTP)^{61,62} (Fig. 3).

Apart from their classic genomic effects, glucocorticoids also have non-genomic actions, characterized by their rapid (i.e., lasting a few minutes) anti-inflammatory and immunosuppressive effects, and post-transcriptional actions regulating gene expression at the level of mRNA^{62,63}.

Glucocorticoid hyporesponsiveness

ICS are considered the cornerstone of controller therapy for T2-high asthma, which contrasts with their poor therapeutic efficacy in T2-low asthma^{11,64}. Obesity has been recognized as a risk factor for ICS hyporesponsiveness in asthmatic patients. Asthmatic patients with obesity

FIGURE 3. Cross-talk between vitamin D and glucocorticoids. 1,25-dihydroxyvitamin D, the active form of vitamin D, enhances the effects of glucocorticoids by promoting MKP-1 expression and by producing anti-inflammatory proteins such as IL-10. Moreover, 1,25-dihydroxyvitamin D may reduce the production of IL-17A via modulation of the VDR pathway. GR: glucocorticoid receptor; GRE: glucocorticoid response elements; IL: interleukin; MKP-1: mitogen-activated protein kinase phosphatase 1; RXR: retinoic X receptor; VDR: vitamin D receptor; VDRE: vitamin D response elements.

have reduced odds of achieving asthma control, higher risk of asthma hospitalizations, and lower quality of life compared with asthmatics with a normal BMI^{4,65,66}. A positive correlation has been found between high BMI with residual asthma symptoms that remained present in OA patients despite intensive treatment with high doses of ICS⁶⁶. The mechanism(s) by which obesity negatively impacts asthma control by ICS remains to be fully elucidated. Detrimental effects of obesity on lung function and additive or synergistic effects of obese systemic inflammation on airways inflammation, have been proposed as potential

mechanisms to explain ICS hyporesponsiveness in obesity-related asthma^{2,21}.

Some studies analyse GR abnormalities^{7,67,68}. Variants of GR formed by alternative splicing may modulate glucocorticoid sensitivity. Increased expression of GR β isoform has been reported in patients with glucocorticoid-resistant asthma. It is induced by pro-inflammatory cytokines and competes with GR α to bind with GRE, thus acting as a dominant negative inhibitor^{69,70}. Another group found that dysregulation of the GR α /GR β isoform ratio may contribute to glucocorticoid hyporesponsiveness in OA⁶⁸. A recent study showed that the GR nuclear translocation in CD4 $^+$ T cells from healthy controls and patients with moderate asthma at the baseline was the same without significant difference while almost no GR translocation was detected in CD4 $^+$ T cells of patients with uncontrolled severe asthma⁷¹.

Other studies evaluate cytokine profiles in cultured cells under glucocorticoid treatment^{72,73}. IL-10 is a potent anti-inflammatory and immune-regulatory cytokine which is secreted by Treg cells in response to glucocorticoids⁷⁴. Th17 cells, which secrete IL-17, are increased in patients with severe asthma which is in turn associated with neutrophilic inflammation⁷⁵. Th17 cells appear to be glucocorticoid resistant in mice studies⁷⁶.

Moreover, measuring dexamethasone-suppression of cell proliferation assays^{67,77-79} and analysing expression of genes induced by glucocorticoids, such as MKP-1^{7,31,79}, are two of the most used methods to study glucocorticoid hyporesponsiveness. In proliferation assays, the glucocorticoid IC₅₀ value can be used as an indirect marker of sensitivity because it

represents the glucocorticoid dose that inhibits 50% of cell proliferation⁷⁹. Bantulà et al.⁷⁹ found that dexamethasone IC₅₀ values from obese subjects with or without asthma were lower compared with lean asthmatics and non-obese non-asthmatic participants, meaning obesity is characterized by a reduced response to glucocorticoid treatment, assessed by means of a PBMCs and CD4 $^+$ T cells proliferation assay. Moreover, the reduced response negatively correlated with the serum adiponectin/leptin ratio, a marker associated with the level of inflammation in subjects with obesity⁷⁹.

One hypothesis is that obese subjects present an altered molecular response to glucocorticoids due to systemic inflammation. Glucocorticoids inhibit pro-inflammatory gene expression, in part through negative regulation of MAPK signalling pathways by molecules such as MKP-1⁸⁰. Given that pro-inflammatory cytokines, such as IL-1, IL-6, and TNF- α , are increased in many obese individuals, and given that these same cytokines are regulated by and potential regulators of p38 MAPK⁸⁰, it is possible that this pro-inflammatory environment might modify glucocorticoid function in asthmatic patients with obesity³¹.

These data indicate that *in vitro* biomarkers of glucocorticoid hyporesponsiveness increase in both the lung and peripheral blood as body mass increases in individuals with asthma, but not in control subjects without asthma. This effect is manifested by a reduced induction of MKP-1 expression in response to dexamethasone in both PBMCs and BALF cells, and is related to enhanced expression of TNF- α in both peripheral and lung immune cells as body mass increases, suggesting a scenario in which one or more molecular pathways governing

glucocorticoid responses are modified in both the airway and peripheral blood in asthmatic subjects with overweight and obesity³¹. Interestingly, obesity in non-asthmatic subjects had no effect on MKP-1 expression, suggesting that, due to unclear reasons, the effect of obesity only impacts MKP-1 expression in asthma patients³¹. Other authors found no significant differences in dexamethasone-dependent induction of MKP-1 in OA compared with their lean counterparts⁷⁹. Differences in patients' clinical characteristics, such as asthma severity or pulmonary function, may explain discrepancies between these studies^{31,79}. Asthma severity has been shown to be closely related to the level of dexamethasone-induced MKP-1 expression⁸¹.

Bariatric surgery and glucocorticoid sensitivity

In a large retrospective study, bariatric surgery led to the discontinuation of bronchodilators in 39.3% of patients within one year⁸². Similar results, with a 49% reduction in inhaled treatments at one year of bariatric surgery, improvement in asthma control assessed by the asthma control questionnaire (ACQ) score, and reduction of emergency room visits were found in other studies^{48,83}. Bariatric surgery also improved lung function and reduced AHR^{72,84}. However, in another study, the improved effect on AHR was only found in the group of OA with high serum IgE levels⁴⁸. The effect on asthma control, therapeutic reduction and lung function seems to persist after five years of bariatric surgery⁸⁵. In an *in vitro* study, PBMCs and CD4⁺ T cells from obese subjects with or without asthma increased dexamethasone sensitivity six months after bariatric surgery. Weight loss after surgery was associated with a marked

improvement in the reduced antiproliferative effects of glucocorticoids in subjects with obesity⁷⁹.

VITAMIN D

During the last decades, laboratory and observational studies have demonstrated that different nutrients, such as long-chain omega 3 fatty acids, curcumin, and vitamin D, among others, have therapeutical anti-oxidant and anti-inflammatory effects^{86,87}. These studies showed that supplementation with these compounds may be associated with reduced exacerbations of inflammatory diseases including chronic obstructive lung disease or asthma⁸⁶.

Vitamin D is a hormone with pleiotropic effects and numerous regulatory mechanisms beyond bone health⁸⁸. The active form of vitamin D, 1,25-dihydroxyvitamin D, binds the VDR, present in all tissues including T and B lymphocytes, dendritic cells, bronchial epithelial cells, and lung fibroblasts⁸⁸ (Fig. 3).

Vitamin D in obesity asthma syndrome

On the one hand, low serum vitamin D is correlated with impaired lung function, increased AHR, poor asthma control, reduced glucocorticoid response and increased number of asthma exacerbations^{7,89,90}. Higher vitamin D serum levels have a positive effect on the prevention of exacerbation and better treatment of asthma symptoms⁹¹, are associated with a higher rate of FEV₁ and FVC and with better asthma control^{90,92}. Vitamin D may play a role in foetal lung development and in

the differentiation of type II pneumocytes and surfactant secretion⁹³.

On the other hand, low vitamin D levels have been extensively reported in obesity, with a prevalence ranging from 40-80%^{94,95}. Low vitamin D levels inversely correlated with body weight, BMI, fat mass^{9,96,97}, and the risk of abdominal obesity⁹⁸. It is well established that vitamin D levels in subjects with obesity are lower than people of normal weight⁹⁹, and some clinical studies support the role of obesity as a causal risk factor for the development of a low vitamin D status^{100,101}. However, the exact mechanisms responsible for this association remain unclear. There is a hypothesis based on the potential of adipose tissue to store and retain vitamin D, preventing uncontrolled synthesis of vitamin D in the liver and protecting against potential toxicity¹⁰⁰. When obese and non-obese adults were exposed to simulated sunlight or received an oral dose of 50,000 IU of vitamin D, they were able to raise their blood levels of vitamin D by no more than 50% compared with non-obese adults¹⁰². The study by Wortsman et al.⁹⁶ demonstrated that although skin biosynthesis of vitamin D did not differ between subjects with normal weight and obesity, serum vitamin D concentrations were lower in those with obesity. These findings suggest that vitamin D, as a fat-soluble vitamin, is possibly accumulated and sequestered into adipose tissue and is unable to enter the circulation to produce vitamin D in the liver. This can lead to lower plasma levels of vitamin D in subjects with excess accumulation of adipose tissue¹⁰.

One of the few studies on the effect of vitamin D in asthmatic patients with obesity found that FEV₁ and FRC were lower among

vitamin D deficient OA children than their sufficient counterparts, and total lung capacity was lower than their insufficient counterparts. Similar associations were not observed in normal-weight asthmatics and were not influenced by systemic inflammation¹⁰³.

Experimental evidence suggests an effect of the biological active form of vitamin D on multiple different processes and cell types. *In vitro* 1,25-dihydroxyvitamin D reduces the production of IgE from peripheral human B cells and increases expression of IL-10^{104,105}. Moreover, serum vitamin D inversely correlates with sputum eosinophil count^{91,106,107}. Interestingly, a recent study demonstrated that vitamin D exerts antiproliferative effects on PBMCs and CD4⁺ T cells by itself, reducing cell proliferation in healthy participants as well as in obese subjects with or without asthma, and non-obese subjects⁷⁹.

Vitamin D can also prevent asthma by adjusting the effect of CD4⁺ T cells such as Th1, Th2 and Treg cells. In the immune system, vitamin D has a complex role, high levels are associated to a decrease in the Th1 response, and it can modulate the Th2 response affecting cytokines such as IL-4, IL-5 and IL-13⁹³. It also makes asthma control better by inhibiting Th17 lymphocytes related to asthma severity and low steroid responsiveness¹⁰⁸. Interestingly, 1,25-dihydroxyvitamin D potently induced expression of the gene SERPINA1, encoding the anti-protease α -1-antitrypsin. α -1-antitrypsin promotes anti-inflammatory IL-10 synthesis in other immune cell populations¹⁰⁹. Evidence exists that 1,25-dihydroxyvitamin D controls synthesis of the anti-inflammatory cytokine IL-10, with positive correlations seen *in vivo*^{90,110}. Vitamin D has also been shown to induce

Treg cell differentiation and IL-10 secretion that helps attenuate the airway smooth muscle cell hypertrophy which underlies severe asthma pathophysiology⁹⁰.

WEIGHT LOSS AND VITAMIN D LEVELS

Buscemi et al.¹¹¹ confirmed that patients with obesity have lower vitamin D levels that normalize after significant weight loss induced by a low-calorie ketogenic diet, supporting the hypothesis that vitamin D is stored in the adipose tissue and released following weight loss. Another study found that weight loss through bariatric surgery was also associated with an increase in vitamin D serum levels in both obese and OA subjects⁷⁹.

Furthermore, vitamin D deficiency was investigated in a meta-analysis of 12 prospective studies of 1285 subjects with obesity after bariatric surgery, who received vitamin D supplementation¹¹². Vitamin D supplementation was associated with significant improvement in vitamin D levels one year after bariatric surgery, independently of study design, baseline levels, weight loss and vitamin D dosage. Also, vitamin D deficiency decreased from 54% preoperatively to 31% one year postoperatively¹⁰. The effect of bariatric surgery on vitamin D status is extremely difficult to be evaluated, due to the great variability in vitamin D supplementation strategy after surgery.

Vitamin D and glucocorticoids

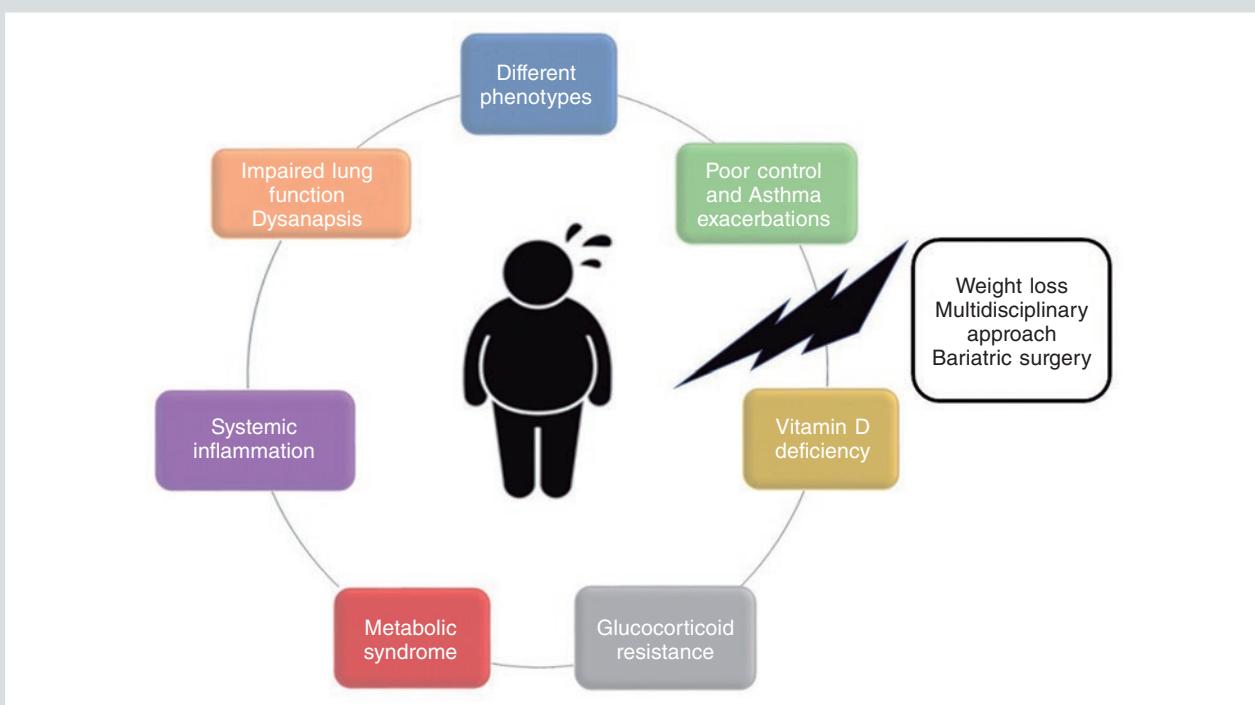
Vitamin D alters the anti-inflammatory action of glucocorticoids. Both steroid hormone

receptors and vitamin D receptors belong to the nuclear receptor superfamily. Given the structural similarities of steroid hormone molecules and their receptors, their co-localization in cells, and similar mechanisms on gene regulation and signalling, it is possible that cross-talk between these molecules affects glucocorticoid function and glucocorticoid response³.

Several reports have shown that a low level of serum vitamin D can lead to a reduced glucocorticoid response and, consequently, a higher demand of daily doses of glucocorticoids^{89,90,92}. Moreover, it has been suggested that receiving high doses of 1,25-dihydroxyvitamin D as an add-on therapy taken at monthly intervals may significantly decrease the requirement for glucocorticoid¹¹³ and subsequently enhance the glucocorticoid response¹¹⁴. A small prospective study of children with asthma showed that vitamin D added on budesonide treatment reported less number of respiratory infections including asthma exacerbations than the steroid treatment alone¹¹⁵. Another epidemiological study in children showed that higher vitamin D levels were associated with lower use of ICS as well as leukotriene antagonists. Moreover, higher levels were also associated with low total IgE levels and blood eosinophil count¹¹⁶. A recent study found a negative correlation between the antiproliferative effects of glucocorticoids with vitamin D serum levels. Obese patients with vitamin D deficiency levels were those with the poorest antiproliferative response to glucocorticoids⁷⁹.

In addition to the *in vivo* clinical studies illustrating a glucocorticoid-sensitizing effect of vitamin D, evidence also exists *in vitro*

studies. The interaction of vitamin D with GR is not clearly understood, but studies show that vitamin D has steroid-sparing effects enhancing glucocorticoid responsiveness by increasing its anti-inflammatory activity^{3,117}. A significantly lower concentration of glucocorticoids was required to suppress pro-inflammatory cytokine production by PBMCs in the presence of vitamin D¹¹⁷. Furthermore, vitamin D is capable of potentiating the anti-proliferative effects of glucocorticoids reducing the dexamethasone IC₅₀ value and, subsequently, cells became more sensitive to glucocorticoid's action⁷⁹. These suggest that vitamin D may enhance glucocorticoid responsiveness resulting in a lower dose of glucocorticoid required to reduce inflammation, thereby reducing glucocorticoid-mediated side effects^{79,117}.


In patients with glucocorticoid-resistant asthma, there appear to be defects in glucocorticoid-induced gene transcription of anti-inflammatory mediators such as IL-10 and MKP-1. In an *in vitro* study, PBMCs isolated from asthmatic subjects were treated with dexamethasone alone and dexamethasone with vitamin D. Enhanced induction of MKP-1 and IL-10 was seen in dexamethasone with vitamin D treatment group as compared to dexamethasone alone treatment group¹¹⁸. Moreover, the hormone increases the expression of MKP-1 with some differences between obese and non-obese subjects, a finding that suggests that the efficacy of vitamin D to increase dexamethasone-induction of anti-inflammatory genes is more pronounced in subjects with obesity⁷⁹.

Moreover, Xystrakis et al.¹¹⁹ showed that adding 1,25-dihydroxyvitamin D to CD4⁺ T cells

culture or supplementing steroid refractory asthmatics with 1,25-dihydroxyvitamin D restored the dexamethasone induction of IL-10. A proposed mechanism for this is that vitamin D can overcome the downregulation of the glucocorticoid receptor by dexamethasone¹²⁰. They concluded that supplementation of vitamin D may increase therapeutic response to glucocorticoid in glucocorticoid-resistant asthma¹¹⁹.

Asthmatic patients synthesized much higher levels of IL-17A and IL-22 than non-asthmatic control subjects, with patients with steroid-resistant asthma expressing the highest levels of IL-17A. Glucocorticoids did not inhibit IL-17A cytokine expression in patients and, in contrast, enhanced its production in cell cultures from control subjects. Treatment with 1,25-dihydroxyvitamin D with or without dexamethasone significantly reduced both IL-17A and IL-22 levels^{118,121,122}. Chambers et al.¹²³ found that oral vitamin D improved dexamethasone-induced IL-10 production *in vitro* and suppressed IL-17A production. Human studies reveal that 1,25-dihydroxyvitamin D diminished the production of IL-17A via modulation of the VDR pathway^{120,122,124}. Cross-talk between vitamin D and glucocorticoids is represented in figure 3.

More research is needed to understand the OAS and its different phenotypes. Good clinical practice for respiratory physicians should include assessment of anthropometric and metabolic measurements in all patients with asthma, in order to accurately identify other phenotypes inside of the complexity of OAS. A multidisciplinary approach has a key role in the treatment of these patients (Fig. 4)¹²⁵.

FIGURE 4. Complexity of the obese asthma syndrome (OAS). Multidisciplinary approach (respiratory physicians, endocrinologists, dieticians, etc.) is the key to break the pathological circle present in these patients.

Adapted from figure 1 in reference 125.

CONCLUSIONS

There has been much speculation and debate regarding the role of obese-related low-grade systemic inflammation as a potentiating factor for systemic and airway inflammation in patients with OAS in order to explain why patients with this association frequently present a severe disease, resistant to glucocorticoid treatment. However, the scientific evidence supporting this hypothesis is very scarce and inconsistent. In this review, we found evidence of partially differentiated systemic inflammation in asthma and obesity. We summarized contributions that may help to better understand the links between obesity and poor response to ICS in adults with obesity-associated

asthma that support the role of obesity in ICS hyporesponsiveness and demonstrate the efficacy of weight loss to improve asthma symptoms and lung function. This effect can be, at least in part, due to the recovered anti-inflammatory response to glucocorticoids. Vitamin D supplementation in asthma patients with obesity and with vitamin D deficiency may contribute to achieve asthma control by improving ICS efficacy. Bariatric surgery is the most effective and sustained long-term treatment of severe obesity. Weight reduction significantly improves systemic and adipose tissue inflammatory activity levels and has been associated with a marked improvement in reducing anti-proliferative effects of glucocorticoids in subjects with obesity.

REFERENCES

- Peters U, Dixon AE, Forno E. Obesity and asthma. *J Allergy Clin Immunol*. 2018;141:1169–79.
- Bantulà Fonts M, Roca-Ferrer J, Arismendi E, Picado C. Asthma and Obesity: Two Diseases on the Rise and Bridged by Inflammation. *J Clin Med*. 2021;10:1–21.
- Kalra N, Ishmael FT. Cross-talk between vitamin D, estrogen and corticosteroids in glucocorticoid resistant asthma. *OA Inflamm*. 2014;2:2.
- Boulet LP, Franssen E. Influence of obesity on response to fluticasone with or without salmeterol in moderate asthma. *Respir Med*. 2007;101:2240–7.
- Peters-Golden M, Swern A, Bird SS et al. Influence of body mass index on the response to asthma controller agents. *Eur Respir J*. 2006;27:495–503.
- Szentpetery SE, Han YY, Brehm JM et al. Vitamin D insufficiency, plasma cytokines, and severe asthma exacerbations in school-aged children. *J Allergy Clin Immunol Pract*. 2018;6:289–91.e2.
- Sutherland ER, Goleva E, Jackson LP, Stevens AD, Leung DYM. Vitamin D Levels, Lung Function, and Steroid Response in Adult Asthma. *Am J Respir Crit Care Med*. 2010;181:699–704.
- Zupo R, Castellana F, Sardone R et al. Hydroxyvitamin D Serum Levels are Negatively Associated with Platelet Number in a Cohort of Subjects Affected by Overweight and Obesity. *Nutrients*. 2020;12.
- De Pergola G, Triggiani V, Bartolomeo N et al. Low 25 Hydroxyvitamin D Levels are Independently Associated with Autoimmune Thyroiditis in a Cohort of Apparently Healthy Overweight and Obese Subjects. *Endocrine, Metab Immune Disord - Drug Targets*. 2018;18:646–52.
- Karampela I, Sakellou A, Vallianou N et al. Vitamin D and Obesity: Current Evidence and Controversies. *Curr Obes Rep*. 2021;10:162–80.
- Papi A, Brightling C, Pedersen SE, Reddel HK. *Asthma*. *Lancet*. 2017;391:783–800.
- Camargo CA, Weiss ST, Zhang S, Willett WC, Speizer FE. Prospective study of body mass index, weight change, and risk of adult-onset asthma in women. *Arch Intern Med*. 1999;159:2582–8.
- Chen Y, Dales R, Tang M, Krewski D. Obesity may increase the incidence of asthma in women but not in men: Longitudinal observations from the Canadian National Population Health Surveys. *Am J Epidemiol*. 2002;155:191–7.
- Ford ES. The epidemiology of obesity and asthma. *J Allergy Clin Immunol*. 2005;115:897–909.
- Ping Z, Pei X, Xia P et al. Anthropometric indices as surrogates for estimating abdominal visceral and subcutaneous adipose tissue: A meta-analysis with 16,129 participants. *Diabetes Res Clin Pract*. 2018;143:310–9.
- Dixon AE, Poynter ME. Mechanisms of asthma in obesity pleiotropic aspects of obesity produce distinct asthma phenotypes. *Am J Respir Cell Mol Biol*. 2016;54:601–8.
- Sutherland ER, Goleva E, King TS et al. Cluster analysis of obesity and asthma phenotypes. *PLoS One*. 2012;7:1–7.
- Haldar P, Pavord ID, Shaw DE et al. Cluster analysis and clinical asthma phenotypes. *Am J Respir Crit Care Med*. 2008;178:218–24.
- Moore WC, Hastie AT, Li X et al. Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis. *J Allergy Clin Immunol*. 2014;133.
- Holguin F. Obesity as a risk factor for increased asthma severity and allergic inflammation; cause or effect? *Clin Exp Allergy*. 2012;42:612–3.
- Arismendi E, Bantulà M, Perpiñà M, Picado C. Effects of Obesity and Asthma on Lung Function and Airway Dysanapsis in Adults and Children. *J Clin Med*. 2020;9:3762.
- Fahy JV. Type 2 inflammation in asthma—present in most, absent in many. *Nat Rev Immunol*. 2015;15:57–65.
- Lambrecht BN, Hammad H. The immunology of asthma. *Nat Immunol*. 2015;16:45–56.
- Cohn L, Elias JA, Chupp GL. Asthma: Mechanisms of Disease Persistence and Progression. *Annu Rev Immunol*. 2004;22:789–815.
- Jia L, Wang Y, Li J et al. Detection of IL-9 producing T cells in the PBMCs of allergic asthmatic patients. *BMC Immunol*. 2017;18:1–9.
- Del Giacco SR, Bakirtas A, Bel E et al. Allergy in severe asthma. *Allergy*. 2016;72:207–20.
- Al-Kufaidy R, Vazquez-Tello A, Hammam AS et al. IL-17 enhances the migration of B cells during asthma by inducing CXCL13 chemokine production in structural lung cells. *J Allergy Clin Immunol*. 2017;139:696–699.e5.
- Halwani R, Sultana A, Vazquez-Tello A et al. Th-17 regulatory cytokines IL-21, IL-23, and IL-6 enhance neutrophil production of IL-17 cytokines during asthma. *J Asthma*. 2017;54:893–904.
- Marijsse GS, Seys SF, Schelpe AS et al. Obese individuals with asthma preferentially have a high IL-5/IL-17A/IL-25 sputum inflammatory pattern. *Am J Respir Crit Care Med*. 2014;189:1284–5.
- Scott HA, Gibson PG, Garg ML, Wood LG. Airway inflammation is augmented by obesity and fatty acids in asthma. *Eur Respir J*. 2011;38(3):594–602.
- Sutherland ER, Goleva E, Strand M, Beuther DA, Leung DYM. Body mass and glucocorticoid response in asthma. *Am J Respir Crit Care Med*. 2008;178:682–7.
- Todd DC, Armstrong S, D'Silva L et al. Effect of obesity on airway inflammation: A cross-sectional analysis of body mass index and sputum cell counts. *Clin Exp Allergy*. 2007;37:1049–54.
- Kim HY, Lee HJ, Chang YJ et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. *Nat Med*. 2014;20:54–61.
- Williams AS, Chen L, Kasahara DI et al. Obesity and airway responsiveness: role of TNFR2. *Pulm Pharmacol Ther*. 2013;26:444–54.
- Asthma S, Desai D, Newby C et al. Elevated sputum interleukin-5 and submucosal eosinophilia in obese individuals with. *Am J Respir Crit Care Med*. 2013;188:657–63.
- Farahi N, Loutsios C, Tregay N et al. In vivo imaging reveals increased eosinophil uptake in the lungs of obese asthmatic patients. *J Allergy Clin Immunol*. 2018;142:1659–1662.e8.
- Leiria LOS, Martins MA, Saad MJA. Obesity and asthma: Beyond TH2 inflammation. *Metabolism*. 2015;64:172–81.
- Holguin F, Bleeker ER, Busse WW et al. Obesity and asthma: an association modified by age of asthma onset. *J Allergy Clin Immunol*. 2011;127:1486–93.e2.
- Lee TH, Song HJ, Park CS. Role of inflammasome activation in development and exacerbation of asthma. *Asia Pac Allergy*. 2014;4:187.
- Parisi MM, Grun LK, Lavandoski P et al. Immunosenescence Induced by Plasma from Individuals with Obesity Caused Cell Signaling Dysfunction and Inflammation. *Obesity*. 2017;25:1523–31.
- Wood LG, Garg ML, Gibson PG. A high-fat challenge increases airway inflammation and impairs bronchodilator recovery in asthma. *J Allergy Clin Immunol*. 2011;127:1133–40.
- Wood LG, Li Q, Scott HA et al. Saturated fatty acids, obesity, and the nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome in asthmatic patients. *J Allergy Clin Immunol*. 2019;143:305–15.
- Umetsu DT. Mechanisms by which obesity impacts upon asthma. *Thorax*. 2017;72:174–7.
- Dixon JB, Chapman L, O'Brien P. Marked improvement in asthma after Lap-Band® surgery for morbid obesity. *Obes Surg*. 1999;9:385–9.
- Maniscalco M, Zedda A, Faraone S et al. Weight loss and asthma control in severely obese asthmatic females. *Respir Med*. 2008;102:102–8.
- Sideleva O, Suratt BT, Black KE et al. Obesity and asthma: An inflammatory disease of adipose tissue not the airway. *Am J Respir Crit Care Med*. 2012;186:598–605.
- Bantula M, Tubita V, Roca-ferrer J et al. Differences in Inflammatory Cytokine Profile in Obesity-Associated Asthma: Effects of Weight Loss. *J Clin Med*. 2022;11:3782.
- Van Huisstede A, Rudolphus A, Cabezas MC et al. Effect of bariatric surgery on asthma control, lung function and bronchial and systemic inflammation in morbidly obese subjects with asthma. *Thorax*. 2015;70:659–67.

49. de Lima Azambuja R, da Costa Santos Azambuja LSE, Costa C, Rufino R. Adiponectin in Asthma and Obesity: Protective Agent or Risk Factor for More Severe Disease? *Lung*. 2015;193:749–55.

50. Capelo AV, da Fonseca VM, Peixoto MVM et al. Visceral adiposity is associated with cytokines and decrease in lung function in women with persistent asthma. *Rev Port Pneumol English Ed*. 2016;22:255–61.

51. Dogru M, Ozde S, Aktas A, Yuksel Karatoprak E. The adiponectin levels and asthma control in non-obese children with asthma. *J Asthma*. 2015;52:772–6.

52. Ma C, Wang Y, Xue M. Correlations of severity of asthma in children with body mass index, adiponectin and leptin. *J Clin Lab Anal*. 2019;33.

53. Tsaroucha A, Daniil Z, Malli F et al. Leptin, adiponectin, and ghrelin levels in female patients with asthma during stable and exacerbation periods. *J Asthma*. 2013;50:188–97.

54. Arismendi E, Rivas E, Agustí A et al. The Systemic Inflammome of Severe Obesity before and after Bariatric Surgery. *PLoS One*. 2014;9:e107859.

55. Baltieri L, Cazzo E, de Souza AL et al. Influence of weight loss on pulmonary function and levels of adipokines among asthmatic individuals with obesity: One-year follow-up. *Respir Med*. 2018;145:48–56.

56. van Huisstede A, Rudolphus A, van Schadewijk A et al. Bronchial and Systemic Inflammation in Morbidly Obese Subjects with Asthma: A Biopsy Study. *Am J Respir Crit Care Med*. 2014;190:951–4.

57. Liu J, Zhang M, Niu C et al. Dexamethasone Inhibits Repair of Human Airway Epithelial Cells Mediated by Glucocorticoid-Induced Leucine Zipper (GILZ). *PLoS One*. 2013;8:1–9.

58. Pujols L, Mullol J, Picado C. Importance of glucocorticoid receptors in upper and lower airways. *Front Biosci*. 2010;15:789–800.

59. Barnes PJ. Corticosteroids. In: *Asthma and COPD: Basic Mechanisms and Clinical Management*. 2008;639–53.

60. Pujols L, Mullol J, Picado C. Alpha and beta glucocorticoid receptors: Relevance in airway diseases. *Curr Allergy Asthma Rep*. 2007;7:93–9.

61. Clark AR. Anti-inflammatory functions of glucocorticoid-induced genes. *Mol Cell Endocrinol*. 2007;275:79–97.

62. Ishmael FT, Fang X, Galdiero MR et al. Role of the RNA-binding Protein Tristetraprolin in Glucocorticoid-mediated Gene Regulation. *J Immunol*. 2008;180:8342–53.

63. Cato ACB, Nestl A, Mink S. Rapid Actions of Steroid Receptors in Cellular Signaling Pathways. *Sci STKE*. 2002;2002:re9.

64. Hammad H, Lambrecht BN. The basic immunology of asthma. *Cell*. 2021; 184:1469–85.

65. Forno E, Lescher R, Strunk R et al. Decreased response to inhaled steroids in overweight and obese asthmatic children. *J Allergy Clin Immunol*. 2011; 127:741–9.

66. Farah CS, Kermode JA, Downie SR et al. Obesity is a determinant of asthma control independent of inflammation and lung mechanics. *Chest*. 2011; 140:659–66.

67. Torrego A, Pujols L, Roca-Ferrer J et al. Glucocorticoid receptor isoforms alpha and beta in *in vitro* cytokine-induced glucocorticoid insensitivity. *Am J Respir Crit Care Med*. 2004;170:420–5.

68. Healy Al, Gaudet M, Ramakrishnan RK et al. Contribution of IL-17 in Steroid Hyporesponsiveness in Obese Asthmatics Through Dysregulation of Glucocorticoid Receptors α and β . *Front Immunol*. 2020;11:1724.

69. Webster JC, Oakley RH, Jewell CM, Cidlowski JA. Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative mechanism for the generation β isoform: A of glucocorticoid resistance. *Proc Natl Acad Sci*. 2001;84:1744–8.

70. Vazquez-Tello A, Semlali A, Chakir J et al. Induction of glucocorticoid receptor- β expression in epithelial cells of asthmatic airways by T-helper type 17 cytokines. *Clin Exp Allergy*. 2010;40:1312–22.

71. Alizadeh Z, Mazinani M, Mortaz E et al. Glucocorticoid receptor nuclear translocation in CD4 T cells from severe and moderate asthmatic patients treated with fluticasone/vilanterol. *Iran J Allergy Asthma Immunol*. 2018;17:1–8.

72. Dixon AE, Pratley RE, Forgiore PM et al. Effects of obesity and bariatric surgery on airway hyperresponsiveness, asthma control, and inflammation. *J Allergy Clin Immunol*. 2011;128:508–515.e2.

73. Goleva E, Searing DA, Jackson LP, Richers BN, Leung DYM. Steroid requirements and immune associations with vitamin D are stronger in children than adults with asthma. *J Allergy Clin Immunol*. 2012;129:1243–51.

74. Hawrylowicz CM. Regulatory T cells and IL-10 in allergic inflammation. *J Exp Med*. 2005;202:1459–63.

75. Alcorn JF, Crowe CR, Kolls JK. TH17 Cells in Asthma and COPD. *Annu Rev Physiol*. 2010;72:495–516.

76. McKinley L, Alcorn JF, Peterson A et al. TH17 Cells Mediate Steroid-Resistant Airway Inflammation and Airway Hyperresponsiveness in Mice. *J Immunol*. 2008;181:4089.

77. Vazquez-Tello A, Halwani R, Hamid Q, Al-Muhsen S. Glucocorticoid receptor-beta up-regulation and steroid resistance induction by IL-17 and IL-23 cytokine stimulation in peripheral mononuclear cells. *J Clin Immunol*. 2013; 33:466–78.

78. Koetzler SC, Van Langelaar J, Blok KM et al. Brain-homing CD4 + T cells display glucocorticoid-resistant features in MS. *Neurol Neuroimmunol Neuroinflamm*. 2020;7:894.

79. Bantula M, Tubita V, Roca-Ferrer J et al. Weight loss and vitamin D improve hyporesponsiveness to corticosteroids in obese asthma. *J Investig Allergol Clin Immunol*. 2022;33.

80. Clark AR. MAP kinase phosphatase 1: a novel mediator of biological effects of glucocorticoids? *J Endocrinol*. 2003;178:5–12.

81. Martineau AR, Cates CJ, Urashima M et al. Vitamin D for the management of asthma. *Cochrane Database Syst Rev*. 2016;2016.

82. Reddy RC, Baptist AP, Fan Z, Carlin AM, Birkmeyer NJO. The effects of bariatric surgery on asthma severity. *Obes Surg*. 2011;21:200–6.

83. Sikka N, Wegienka G, Havstad S et al. Respiratory medication prescriptions before and after bariatric surgery. *Ann Allergy Asthma Immunol*. 2010;104: 326–30.

84. Boulet LP, Turcotte H, Martin J, Poirier P. Effect of bariatric surgery on airway response and lung function in obese subjects with asthma. *Respir Med*. 2012;106:651–60.

85. Maniscalco M, Zamparelli AS, Vitale DF et al. Long-term effect of weight loss induced by bariatric surgery on asthma control and health related quality of life in asthmatic patients with severe obesity: A pilot study. *Respir Med*. 2017;130:69–74.

86. Gold DR, Litonjua AA, Carey VJ et al. Lung VITAL: Rationale, design, and baseline characteristics of an ancillary study evaluating the effects of vitamin D and/or marine omega-3 fatty acid supplements on acute exacerbations of chronic respiratory disease, asthma control, pneumonia and lung function in adults HHS Public Access. *Contemp Clin Trials*. 2016;47:185–95.

87. Jaiswal A, Dash D, Singh R. Intranasal curcumin and dexamethasone combination ameliorates inflammasome (NLRP3) activation in lipopolysaccharide exposed asthma exacerbations. *Toxicol Appl Pharmacol*. 2022; 436:115861.

88. Bouillon R, Marcocci C, Carmeliet G et al. Skeletal and Extraskeletal Actions of Vitamin D: Current Evidence and Outstanding Questions. *Endocr Rev*. 2019;40:1109.

89. Einisadr A, Rajabi M, Moezzi H, Bakhshandeh H. Impact of rapid correction of vitamin D deficiency in asthmatic patients. *Wien Klin Wochenschr*. 2022;134:18–23.

90. Gupta A, Sjoukes A, Richards D et al. Relationship between Serum Vitamin D, Disease Severity, and Airway Remodeling in Children with Asthma. *Am J Respir Crit Care Med*. 2011;184:1342.

91. Korn S, Hübner M, Jung M, Blettner M, Buhl R. Severe and uncontrolled adult asthma is associated with vitamin D insufficiency and deficiency. *Respir Res*. 2013;14:25.

92. Gupta A, Bhat G, Pianosi P. What is New in the Management of Childhood Asthma? *Indian J Pediatr*. 2018;85:773–81.

93. Lange NE, Litonjua A, Hawrylowicz CM, Weiss S. Vitamin D, the immune system and asthma. *Expert Rev Clin Immunol*. 2009;5:693.

94. Walsh JS, Evans AL, Bowles S et al. Free 25-hydroxyvitamin D is low in obesity, but there are no adverse associations with bone health. *Am J Clin Nutr*. 2016;103:1465–71.

95. Park JE, Pichiah PBT, Cha YS. Vitamin D and metabolic diseases: Growing roles of Vitamin D. *J Obes Metab Syndr*. 2018;27:223–32.

96. Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. *Am J Clin Nutr*. 2000;72:690–3.

97. Asghari S, Hamed-Shahraki S, Amirkhizi F. Vitamin D status and systemic redox biomarkers in adults with obesity. *Clin Nutr*. 2021;45:292–8.

98. Hajhashemy Z, Shahdadian F, Ziae R, Saneei P. Serum vitamin D levels in relation to abdominal obesity: A systematic review and dose-response meta-analysis of epidemiologic studies. *Obes Rev*. 2021;22:e13134.

99. Barrea L, Muscogiuri G, Laudisio D et al. Influence of the Mediterranean Diet on 25-Hydroxyvitamin D Levels in Adults. *Nutr*. 2020;12:1439.

100. Savastano S, Barrea L, Savanelli MC et al. Low vitamin D status and obesity: Role of nutritionist. *Rev Endocr Metab Disord*. 2017;18:215–25.

101. Barrea L, FriaS-Toral E, PUGlieSe G et al. Vitamin d in obesity and obesity-related diseases: an overview. *Minerva Endocrinol*. 2021;46:177–92.

102. Holick MF, Binkley NC, Bischoff-Ferrari HA et al. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. *J Clin Endocrinol Metab*. 2011;96:1911–30.

103. Lautenbacher LA, Jariwala SP, Markowitz ME, Rastogi D. Vitamin D and pulmonary function in obese asthmatic children. *Pediatr Pulmonol*. 2016;51:1276–83.

104. Heine G, Niesner U, Chang HD et al. 1,25-dihydroxyvitamin D3 promotes IL-10 production in human B cells. *Eur J Immunol*. 2008;38:2210–8.

105. Hartmann B, Heine G, Babina M et al. Targeting the vitamin D receptor inhibits the B cell-dependent allergic immune response. *Allergy Eur J Allergy Clin Immunol*. 2011;66:540–8.

106. Brehm JM, Celedón JC, Soto-Quiros ME et al. Serum Vitamin D Levels and Markers of Severity of Childhood Asthma in Costa Rica. *Am J Respir Crit Care Med*. 2009;179:765.

107. Rothenberg ME, Hogan SP. THE EOSINOPHIL. *Annu Rev Immunol*. 2006;24:147–74.

108. Mandy A, Cohn RD, Thorne PS. Endotoxin Exposure, Serum Vitamin D, Asthma and Wheeze Outcomes. *Respir Med*. 2016;114:61–6.

109. Dimeloe S, Rice LV, Chen H et al. Vitamin D (1,25(OH)₂D3) induces α -1-antitrypsin synthesis by CD4 + T cells, which is required for 1,25(OH)₂D3-driven IL-10. *J Steroid Biochem Mol Biol*. 2019;189:1–9.

110. Urry Z, Xystrakis E, Richards DF et al. Ligation of TLR9 induced on human IL-10-secreting Tregs by 1 α ,25-dihydroxyvitamin D3 abrogates regulatory function. *J Clin Invest*. 2009;119:387–98.

111. Buscemi S, Buscemi C, Corleo D et al. Obesity and Circulating Levels of Vitamin D before and after Weight Loss Induced by a Very Low-Calorie Ketogenic Diet. *Nutrients*. 2021;13.

112. Li Z, Zhou X, Fu W. Vitamin D supplementation for the prevention of vitamin D deficiency after bariatric surgery: a systematic review and meta-analysis. *Eur J Clin Nutr*. 2018;72:1061–70.

113. Yadav M, Mittal K. Effect of vitamin D supplementation on moderate to severe bronchial asthma. *Indian J Pediatr*. 2014;81:650–4.

114. De Groot JC, Van Roon ENH, Storm H et al. Vitamin D reduces eosinophilic airway inflammation in nonatopic asthma. *J Allergy Clin Immunol*. 2015;135:670–675.e3.

115. Majak P, Olszowiec-Chlebna M, Smejda K, Stelmach I. Vitamin D supplementation in children may prevent asthma exacerbation triggered by acute respiratory infection. *J Allergy Clin Immunol*. 2011;127:1294–6.

116. Brehm JM, Schuemann B, Fuhlbrigge AL et al. Serum vitamin D levels and severe asthma exacerbations in the Childhood Asthma Management Program study. *J Allergy Clin Immunol*. 2010;126:58.e5.

117. Zhang Y, Leung DYM, Goleva E. Anti-inflammatory and Corticosteroid Enhancing Actions of Vitamin D in the Monocytes of Steroid Resistant and Steroid Sensitive Asthmatics. *J Allergy Clin Immunol*. 2014;133:1744.

118. Searing DA, Zhang Y, Murphy JR et al. Decreased Serum Vitamin D Levels in Children with Asthma are Associated with Increased Corticosteroid Usage. *J Allergy Clin Immunol*. 2010;125:995.

119. Xystrakis E. Reversing the defective induction of IL-10-secreting regulatory T cells in glucocorticoid-resistant asthma patients. *J Clin Invest*. 2005;116:146–55.

120. Mann EH, Chambers ES, Pfeffer PE, Hawrylowicz CM. Immunoregulatory mechanisms of vitamin D relevant to respiratory health and asthma. *Ann N Y Acad Sci*. 2014;1317:57–69.

121. Gupta A, Dimeloe S, Richards DF et al. Defective IL-10 expression and in vitro steroid-induced IL-17A in paediatric severe therapy-resistant asthma. *Thorax*. 2013;69:508–15.

122. Nanzer AM, Chambers ES, Ryanna K et al. Enhanced production of IL-17A in patients with severe asthma is inhibited by 1 α ,25-dihydroxyvitamin D3 in a glucocorticoid-independent fashion. *J Allergy Clin Immunol*. 2013;132.

123. Chambers ES, Nanzer AM, Pfeffer PE et al. Distinct endotypes of steroid-resistant asthma characterized by IL-17Ahigh and IFN- γ high immunophenotypes: Potential benefits of calcitriol. *J Allergy Clin Immunol*. 2015;136:628–37.e4.

124. Jeffery LE, Burke F, Mura M et al. 1,25-dihydroxyvitamin D3 and interleukin-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. *J Immunol*. 2009;183:5458.

125. Arismendi E, Bantulà M, Picado C. Obese Asthma Syndrome: Much Work to Do. *Arch Bronconeumol*. 2023;2–4.