

Triple Therapy for COPD: Historical Perspective and Current Controversies

José L. López-Campos, MD, PhD

Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES). Instituto de Salud Carlos III, Madrid, Spain

ABSTRACT

The use of a combination of three inhaled drugs has recently been established as the first choice for some patients in the algorithm for the treatment of chronic obstructive pulmonary disease. In this review, we aim to give an overview of the development that has led to the establishment of this treatment strategy, as well as to summarize the current challenges that its use presents in real life. Due to the benefits of open triple therapies, various combinations have been developed with a triple therapy effect in one single inhaler. The clinician should bear in mind the potential benefits of prescribing triple combinations, either escalating from double therapies or unifying open therapies into a triple therapy. Specifically, the role of single-inhaler triple therapy in the reduction of mortality risk deserves a thorough evaluation. Consequently, triple therapy should be used as part of the escalation of treatment as the disease progresses.

Keywords: COPD. Inhaled medications. Mortality. Triple therapy.

INTRODUCTION

The use of a combination of three inhaled drugs, consisting of a long-acting β_2 -agonist (LABA), a long-acting muscarinic antagonist (LAMA) and an inhaled corticosteroid (ICS), has been recently established as the first choice for some patients in the algorithm for the treatment of chronic obstructive pulmonary disease (COPD)^{1,2}. In this scenario, it is important to take into account the development of this triple therapy, its challenges and its results in order to fully understand its role in the treatment of the disease. In this review, we aim to present an overview of the development that has led to the establishment of this treatment strategy, as well as to summarize the current challenges that its use presents in real life.

TRIPLE THERAPY IN COPD: THE BACKGROUND

The study of the efficacy and safety of combining three inhaled drugs for the treatment of COPD began to be explored for the first time in 2004 when Aaron et al.³ published the method in their study *Canadian Optimal Therapy of COPD Trial* (OPTIMAL in short), the results of which were made public in 2007⁴. In this multicenter clinical trial, which was not sponsored by any pharmaceutical company, the authors explored the efficacy of the combination of salmeterol with fluticasone propionate and tiotropium in 449 patients with COPD with a one-year follow-up. The comparison groups were tiotropium, tiotropium + salmeterol and tiotropium + salmeterol/fluticasone propionate, and the primary endpoint was the proportion of patients who

experienced an exacerbation of COPD that required treatment with systemic steroids or antibiotics. Although the results were inconclusive and the authors could not demonstrate that the addition of fluticasone–salmeterol to tiotropium therapy influenced rates of COPD exacerbation, they observed that this triple combination did improve lung function, quality of life, and hospitalization rates in patients with moderate to severe COPD.

This study began a path that was followed by subsequent studies with the aim of trying to clarify the clinical impact of combining three inhaled drugs in the treatment of COPD. At that time, the role of this triple combination in patients with severe COPD could only be understood by exploring the role of various molecules in various inhalation devices. Consequently, this led to the development of numerous studies (Table 1) in different types of patients, settings and endpoints that allowed us to form a clearer understanding of the potential role of this triple combination. The most frequently explored combination was the co-administration of salmeterol/fluticasone propionate at a dose of 50/250 μ g every 12 hours in an accuhaler device, together with tiotropium 18 μ g once daily in a handihaler device. The results showed the added effect of triple therapy using different devices that would pave the way to a new therapeutic step in patients with advanced COPD. As a result, the therapy began to be included in the recommendation documents at the time, and was mentioned as a second option in the document of the Global Initiative for Obstructive Lung Disease (GOLD) 2011⁵.

Interestingly, shortly thereafter and during the development of the studies that would

TABLE 1. Combination of multiple inhalers triple therapy explored in the literature

LABA/ICS				LAMA				References
Molecules	Dose*	Inhaler	Posology	Molecule	Dose*	Inhaler	Posology	
Beclomethasone/formoterol	200/12	pMDI	1 puff/24 h	Glycopyrronium	12.5, 25, 50	pMDI	1 puff/24 h	(74)
Fluticasone furoate/vilanterol	100/25	Ellipta	1 puff/24 h	Umeclidinium	62.5, 125	Ellipta	1 puff/24 h	(75)
Fluticasone propionate/salmeterol	250/25	pMDI	2 puffs/12 h	Tiotropium	18	Handihaler	1 puff/24 h	(4)
Fluticasone propionate/salmeterol	500/50	Accuhaler	1 puff/12 h	Tiotropium	18	Handihaler	1 puff/24 h	(76-78)
Fluticasone propionate/salmeterol	250/50	Accuhaler	1 puff/12 h	Tiotropium	18	Handihaler	1 puff/24 h	(78-85)
Fluticasone propionate-salmeterol	250/50	Accuhaler	1 puff/12 h	Umeclidinium	62.5, 125	Ellipta	Once daily	(86)
Budesonide/formoterol	400/12	Turbuhaler	1 puff/12 h	Tiotropium	18	Handihaler	1 puff/24 h	(87, 88)
Budesonide/formoterol	200/6	Turbuhaler	2 puffs/12 h	Tiotropium	18	Handihaler	1 puff/24 h	(89-91)
Budesonide/formoterol	200/6	Turbuhaler	1 puff/12 h	Tiotropium	18	Handihaler	1 puff/24 h	(92)

*Metered dose expressed in µg per actuation.

ICS: inhaled corticosteroids; LABA: long-acting beta agonist; LAMA: long-acting muscarinic antagonist; pMDI: pressurized metered dose inhaler.

lead to knowledge about the efficacy of triple therapy in separate devices, another new form of treatment began to be developed by combining two long-acting bronchodilators from different families in a single inhalation device^{6,7}. The development of the LABA/LAMA combinations led to certain debate over the best option for carrying out triple inhaled therapy, since, at that time, this triple therapy could be achieved in three ways: giving the three drugs separately, adding a LAMA to a LABA/ICS combination, or adding an ICS to a LABA/LAMA combination. Unfortunately, neither at that time nor since have there been any clinical trials that have directly evaluated the prospective efficacy and safety of these different ways of constructing a triple therapy and, at that time, there was speculation about the different options, depending on the type of disease

COPD or asthma⁸. In any case, the open triple combinations explored in these studies have always been a combination of LABA/ICS + LAMA (Table 1), and none have investigated the efficacy of a LABA/LAMA + ICS combination.

Similarly, there are few studies that have compared two triple combinations in different devices. The two main studies are the *Gruppo Lavoro Italiano Sarcopenia-Trattamento e Nutrizione* (GLISTEN) study⁹, which compared combining salmeterol/fluticasone propionate either with tiotropium or with glycopyrronium, and the study by Manoharan et al.¹⁰ comparing tiotropium with aclidinium when added to an unspecified LABA/ICS combination. Both studies found similar efficacy for each of the clinical outcomes explored.

TABLE 2. Summary of single-inhaler triple therapy combinations

LABA	LAMA	ICS	Inhaler	Dose	Stage
Formoterol	Glycopyrronium	Beclomethasone	pMDI NEXThaler	2 puffs/12 h	Approved for COPD
Formoterol	Glycopyrronium	Budesonide	pMDI	2 puffs/12 h	Approved for COPD
Formoterol	Glycopyrronium	Fluticasone propionate	pMDI	1 puff/12 h	Stage III
Indacaterol	Glycopyrronium	Mometasone	Breezhaler	Once daily	Approved for asthma
Vilanterol	Umeclidinium	Fluticasone furoate	Ellipta	Once daily	Approved for COPD
Batefenterol		Fluticasone furoate	Ellipta	Once daily	Stage II

COPD: chronic obstructive pulmonary disease; ICS: inhaled corticosteroids; LABA: long-acting beta agonist; LAMA: long-acting muscarinic antagonist; pMDI: pressurized metered dose inhaler.

SINGLE-INHALER TRIPLE THERAPIES FOR COPD

Due to the expected results of triple therapy in severely affected COPD patients, various combinations with a triple therapy effect in one single inhaler have been developed (Table 2). First, the combination of beclomethasone, formoterol and glycopyrronium using its extrafine pressurized metered dose inhaler formulation (pMDI) has been explored by three major clinical trials¹¹⁻¹³. Additionally, it also became available in an extrafine multi-dose dry powder presentation in the NEXThaler device, while a higher dose formulation of the ICS for the treatment of bronchial asthma became available too¹⁴. Overall, this combination has the advantage of providing an extrafine particulate formulation with good lung deposition and of being available in both pMDI and dry powder for the treatment of COPD.

The second combination is formed by vilanterol, umeclidinium and fluticasone furoate^{15,16}. This combination is available in the Ellipta multi-dose dry powder device. Its advantages

include its single-dose, once-daily dosing and the availability of various drug combinations in the same device, which favors the escalation of therapies as the disease progresses¹⁷ and allows adaptation of the same device to various types of patients with different needs, with excellent pulmonary deposition being shown in both mild and severe patients^{18,19}.

The third combination available for the treatment of COPD is the combination of formoterol, budesonide and glycopyrronium^{20,21} in a pMDI. In addition to the robustness and safety of the molecules, the combination employs one of the most striking technical advantages, its formulation through micro pearls. These micro pearls are engineered porous phospholipid microparticles with aerodynamic diameters in the respirable range of 1-2 μm ²². When compared to suspensions of simple drug microcrystals, the co-suspensions produced by their irreversible association with the porous particles had significantly better suspension stability.

These three single-inhaler triple combinations are currently approved for COPD. Additionally, a fourth triple combination of mometasone,

glycopyrronium and indacaterol in a single-dose dry powder inhaler has been approved for asthma^{23,24}. Although the use of this fourth triple combination is not currently contemplated for COPD, it should be kept in mind for its possible future developments. It consists of a fixed combination with molecules of proven efficacy and allows once-daily dosing. In addition, the Breezhaler device has the lowest internal resistance of all powder devices and ensures adequate lung deposition^{25,26}. Of note, the availability of inhaled drugs and their combinations in Breezhaler is the widest of all inhalation devices, with all families of inhaled drugs and all their combinations, double and triple, being available, and allowing easy and convenient treatment escalation without changing the inhalation device¹⁷.

Finally, in addition to these triple combinations already on the market, there are at least two more in process of development. On the one hand, the combination of Fluticasone propionate with formoterol and glycopyrronium has recently been published after its first phase 3 trial in India²⁷. It is administered in a pMDI every 12 hours and shows similar efficacy to open-label triple therapy. On the other hand, the combination of batefenterol with fluticasone furoate is also under development. Batefenterol is a first-in-class bronchodilator molecule that has a truly dual mechanism, with a muscarinic antagonist and beta agonist (MABA) included within the same molecule. Therefore, although, strictly speaking, the result is a combination of two drugs, a MABA plus an ICS, the therapeutic effect is actually that of triple therapy. This combination with triple therapy effect has been explored in Phase I and II trials with once-daily administration using the Ellipta multi-dose dry powder device^{28,29}.

WHAT DOES TRIPLE THERAPY IN COPD PROVIDE VERSUS SINGLE OR DUAL THERAPIES?

The results of clinical trials of triple therapy in a single inhalation device versus dual or single therapies have been extensively reported in numerous studies, not only in the original clinical trials, but also in pooled analyses of clinical trials, post-hoc analyses, systematic reviews and narrative reviews³⁰⁻³⁴. Advantages in lung function and patient-reported outcomes have been reported in trials comparing single-inhaler triple therapies to multiple treatments in symptomatic patients with moderate to very severe airflow limitation and increased risk of exacerbations. To cut a long story short, the impact of triple therapy on lung function is different if the benefit is assessed against dual therapy of ICS/LABA or LABA/LAMA therapy. In the first case, the gains through forced expiratory volume in one second (FEV₁) can easily exceed 100 mL. In the second case, however, the functional benefits of adding an ICS to dual bronchodilator therapy are smaller, around 50 mL, or in some cases, not significant³¹. This suggests that adding a second bronchodilator to improve lung function is preferable to an ICS, which is to be expected. However, despite this different behavior, when we evaluate the differences in improvement by looking at the reduction in the risk of exacerbations, the perception of dyspnea or the improvement of quality of life, the differences between adding a second bronchodilator or adding an ICS are not so striking. On average, clinical improvements are reported in most cases, but they usually do not reach the traditional threshold level for clinical significance. These results open up the debate on the impact in real life of this triple therapy compared

to previous double therapies. One argument in this context is that the definition of a clinically relevant difference should be reconsidered in patients with severe COPD who require complex and advanced treatments. In any case, these papers show us the average improvement we should expect in patients with COPD with a high disease impact despite treatment, and whose treatment has been intensified.

In this context, the role of the eosinophil and the therapeutic response to ICS is a factor that needs to be kept in mind in light of current knowledge. Although analyzing the role of the eosinophil as a marker of response to ICS is controversial and beyond the scope of this review³⁵, it is currently accepted that patients with a higher blood eosinophil count may have a greater response to ICS³⁶. Consequently, the most recent versions of the two main documents of recommendations on the management of COPD in Spain –GOLD and the Spanish COPD guide (GesEPOC)– place the indication of this triple therapy in patients with a previous history of exacerbations with a high blood eosinophil count^{1,37}.

WHAT IS THE BENEFIT OF SINGLE INHALER VERSUS OPEN TRIPLE THERAPIES?

Although improvements in various clinical outcomes are evident, it could probably be argued that the observed effects are, to some extent, predictable³⁸. It is logical to expect that if we increase the intensity of treatments in symptomatic patients or patients with a high impact of the disease, improvements will occur. However, the interesting question is whether triple therapy in a single inhalation device

offers any advantage over triple therapy in different devices.

Although direct comparisons can be made (as discussed below), all these comparisons are influenced by two relevant factors. Firstly, the change of inhalation device. It is common for triple therapy in separate devices to use different devices to achieve delivery of the three drugs (Table 1), and any possible differences found could have been influenced by the change of device. Secondly, the change in molecule may also be relevant. It has been described that inhaled drugs often have an individualized response at the patient level, which may lead to a certain degree of unpredictability which qualifies their effectiveness^{39,40}. Consequently, a change in molecule could lead to a change in effectiveness, despite the molecule belonging to the same pharmacological group⁴¹. Therefore, any comparison between open versus closed triple therapies will be affected by whether the comparator groups share the same inhaler and molecules or not.

The clinical trials evaluating these comparisons are limited in number but consistent in their findings. For the beclomethasone-based combination, the *Single inhaler extrafine triple therapy versus long-acting muscarinic antagonist therapy for chronic-obstructive pulmonary disease* (TRINITY) study found that treatment with a fixed-dose triple combination achieved clinical benefits comparable to open therapy¹³. The only statistical differences found were in quality of life at weeks 26 and 52, favoring the open triple therapy, and in the rate of moderate to severe exacerbations in the subgroup of patients with two or more exacerbations in the previous 12 months, favoring the fixed-dose combination⁴². Subsequently, a meta-analysis

comparing single-inhaler triple therapies with open triple therapies found no differences in the risk of moderate-severe exacerbations, nor in hospitalizations, lung function or quality of life⁴³. In addition, in the triple therapy containing fluticasone furoate, the authors concluded that the fixed-dose combination was no less effective than separate triple therapy in two inhalers in terms of lung function, symptoms, exacerbations or safety⁴⁴.

Therefore, with the overall data from the trials, we can say that switching from an open triple therapy to a fixed-dose combination results in similar clinical efficacy in the type of patient explored in these trials. In this context, the question therefore arises of the possible clinical benefits of unifying an open triple therapy. After reviewing the literature, three potential benefits can be identified. First, the fewer inhalers a patient has to handle has been associated with a decrease in inhaler handling errors⁴⁵, which could lead to greater effectiveness. This is especially relevant considering that this is a treatment which consists of all three families of inhaled drugs available for the treatment of COPD. Consequently, if critical errors were made due to poor technique, all the three drugs would not be adequately received. Secondly, by reducing the number of devices, greater adherence to treatment is to be expected⁴⁶. At this point, however, it is important to remember that therapeutic adherence is a complex concept involving numerous factors, of which the number of devices is only one⁴⁷. In any case, it is important to emphasize that therapeutic adherence should be a central element in the clinical interview and that, in every contact with the health care system, the professionals who care for these patients should take the

opportunity to emphasize health education concepts such as therapeutic adherence. Third, another potential benefit of using triple therapy is the price. A quick analysis of the prices of the different inhaled drug combinations reveals an interesting situation³². First, triple therapies inhaled in a single device are cheaper than some dual therapies. Second, almost all the open combinations are more expensive than the closed ones with, in many cases, considerable price differences. Third, not all open combinations are more expensive than fixed-dose combinations, so cost-effectiveness studies are needed to assess the budgetary impact of this change at the level of the health system, taking into account the impact on the reduction of exacerbations and, therefore, the use of health resources. Currently, an initial evaluation of the cost-effectiveness of single versus multiple inhalers triple therapy indicates that a single-inhaler triple dose would improve health outcomes and reduce costs compared with open triple therapies for the treatment of patients with symptomatic COPD⁴⁸.

These potential benefits of triple therapy in a single inhalation device have been reinforced by the emergence of new observational studies in real life. A recent real-world, observational, retrospective cohort study analyzed electronic health records in the Spanish National Healthcare System database to identify COPD patients initiating single-inhaler or multiple-inhaler triple therapies from 4,625 eligible cases between June 2018 and December 2019⁴⁹. At the 12-month follow-up, single-inhaler triple therapy patients had a reduced risk of exacerbations and a lower all-cause mortality risk, all of which was accompanied by greater adherence to therapy throughout the follow-up. Accordingly, this effect was also associated

with significantly reduced use of health care resources and a subsequent reduction in the cost of care, with substantial adjusted mean annual cost savings. In addition, the 24-week *INvestigation of TRelegy Effectiveness: usual PractIce Design* (INTREPID) pragmatic trial demonstrated the clinical benefits of once-daily single-inhaler triple therapy versus multiple-inhaler triple therapy in patients with symptomatic COPD⁴⁸. Although the impact on prolongation of survival was not very striking, a reduction in the cost of treatment with triple therapy in a single inhalation device versus separate devices was observed, as mentioned above.

Consequently, if a COPD patient needs to receive three inhaled drugs for the treatment of their clinical condition, for the reasons outlined above, it makes more sense to administer them in a single inhalation device than in separate devices, due to improvements in therapeutic compliance, with the consequent impact on therapeutic effectiveness and the potential influence on costs.

THE MORTALITY EFFECT

COPD therapies and mortality before triple therapy studies

Currently, one of the most controversial aspects of the impact of triple therapy is related to its potential impact on reducing the risk of mortality^{50,51}. Despite a considerable amount of research into the relationship between triple therapy and mortality, the existing evidence should be viewed with caution. The history of inhaled drugs in COPD mortality goes back to the end of the last century with

trials of single and dual therapies and has been marked by controversy.

Before the advent of triple therapy in a single device there had been four large published clinical trials evaluating mortality. The first study was the *Towards a Revolution in COPD Health* (TORCH) clinical trial evaluating the relationship between a salmeterol-fluticasone combination versus placebo on mortality risk as the primary endpoint⁵². After evaluating more than 6000 patients over three years, the differences in mortality were significant in the crude analysis. However, when adjusted for the intermediate analyses performed, the statistical significance was lost, with a p-value of 0.052.

The second mortality analysis was the *Understanding Potential Long-Term Impacts on Function with Tiotropium* (UPLIFT) study, which evaluated almost 6000 patients followed for four years on treatment with tiotropium or placebo and where the assessment of mortality was a secondary endpoint⁵³. When comparing the two study arms during follow-up, patients with tiotropium had a statistically significant lower risk of mortality compared to the control group. However, at the 30-day follow-up after the end of the trial, these differences were no longer significant with a final overall p-value of 0.058.

Until that time, these data provided indications that a long-acting bronchodilator with or without ICS could have an impact on survival, albeit with borderline p-values influenced by various methodological considerations. In this context, a work that contributed to establishing the possible relationship of inhaled drugs with mortality was the *Investigating New Standards for Prophylaxis in Reducing Exacerbations*

(INSPIRE) study, which comparatively evaluated a tiotropium versus a salmeterol-fluticasone propionate arm in more than 1300 COPD patients followed for two years⁵⁴. Although the results of the study were officially negative, since no difference in the rate of exacerbations was found between the study arms, a small, unexpected, statistically significant beneficial effect on the risk of death was found, favoring the combination with ICS. Furthermore, analysis of these previous studies led to the idea that patients with a history of cardiovascular disease would be far more prone to the risk of mortality⁵⁵.

Consequently, at that time it seemed to make sense to conduct a clinical trial with mortality as the primary endpoint and focused on patients with a history of cardiovascular risk factors. This study was the *Study to Understand Mortality and Morbidity* (SUMMIT), a clinical trial to evaluate the impact on mortality of a LABA/ICS combination in patients with a history of cardiovascular risk factors⁵⁶. Unfortunately, the trial results clearly showed that treatment with fluticasone furoate and vilanterol did not affect mortality or cardiovascular outcomes in patients with moderate COPD and elevated cardiovascular risk. These results seemed to put an end to the relationship between inhaled treatments and survival in COPD.

Triple therapies studies and mortality: the effect

With the secondary analyses of triple therapy trials, the story seems to have taken a new turn. These new results were mainly based on two trials evaluating triple therapy

combinations vs double therapies. The *Informing the Pathway of COPD Treatment* (IMPACT) trial evaluated the relative benefits and risks of fluticasone furoate-vilanterol-umeclidinium in patients with symptomatic COPD and a history of exacerbations¹⁶. Mortality was evaluated as an exploratory endpoint, and the authors found that all-cause mortality was significantly lower with the regimens that included the inhaled glucocorticoid fluticasone furoate (triple therapy with fluticasone furoate, vilanterol and umeclidinium and double therapy with fluticasone furoate and vilanterol) than with umeclidinium-vilanterol. The mortality analysis was preliminary and therefore had to be subsequently updated once all the information regarding mortality was finalized⁵⁷. The results of this final analysis confirmed that triple therapy reduced the risk of all-cause mortality compared to dual bronchodilator therapy.

The *Efficacy and Safety of Triple Therapy in Obstructive Lung Disease* (ETHOS) trial evaluated the reduction in mortality risk as a secondary endpoint between a triple combination of budesonide, formoterol and glycopyrronium and double bronchodilation with formoterol-glycopyrronium²¹. In this trial, the authors found that the risk of death from any cause in the 320 µg triple therapy group was 46% lower than that in the double bronchodilation group. Again, this analysis had to be re-evaluated once all the information on clinical outcomes was collected at the end of the follow-up. The reanalysis consistently found a decreased risk of mortality for triple therapy versus dual bronchodilator therapy⁵⁸.

Additionally, although studies with the combination of beclomethasone, formoterol, and

glycopyrronium did not directly assess mortality risk, a pooled analysis of clinical trials of the development of this triple therapy showed a reduction in mortality risk that was significant only for non-respiratory events⁵⁹.

Triple therapies studies and mortality: the precautions

These trials consistently showed a reduction in mortality risk with the use of triple therapy in a single inhalation device. However, among other issues, these papers left open the question as to why studies not designed to assess mortality found this effect, while the studies specially designed to measure this outcome such as TORCH⁵² or SUMMIT⁵⁶ failed to find this association. Various arguments could be put forward in this debate, such as the different molecules, the different inhalation devices, the greater efficacy of a combination of three drugs, or the characteristics of the patients included, among others. However, in order to make a balanced critical interpretation of the data, it is essential to bear in mind some methodological limitations of these mortality analyses.

The first consideration is related to the population analyzed. It is important to keep in mind that the patients chosen had a high disease impact profile, with active symptoms and previous exacerbations. Consequently, these results lack external validity for the complete population of patients with COPD as they are limited to a specific type of patient.

In the same vein, a second nuance should be considered regarding the type of analysis carried out. Superiority trial analysis should be carried out in the intention-to-treat

population. However, the data indicate that these results were provided in two different population sets, namely on-treatment (which corresponds to a per-protocol analysis) and on/off treatment (corresponding to a truly intention-to-treat analysis). Interestingly, the most strikingly significant data between the two arms were obtained in the on-treatment population, i.e., per protocol. When the intention-to-treat population is analyzed, the differences still exist, but are very close to non-significance. This could imply that if some of the other factors presented above were to be corrected, the differences might easily become not significant.

Another aspect to keep in mind concerns the confounding variables by which the analysis is adjusted. We currently know that there are a certain number of variables associated with mortality in COPD, such as exacerbations⁶⁰, hyperinflation⁶¹, comorbidities⁶², or dyspnea⁶³, among others. Consequently, these variables should have been considered in the analyses, since their irregular distribution among the study groups could confound the results. However, as can be seen in Table 3, very few of the variables were used to adjust these analyses, and they were generally decided by the researchers. This prevents us from accepting the results as evidence-based truth, and they must rather be taken as suggestive exploratory data with which to formulate a hypothesis.

In addition to the considerations outlined above, the patients were unevenly distributed between groups. In the IMPACT study, the number of patients in the dual bronchodilator therapy comparator group was half that in the groups with ICSs and, in addition, the

TABLE 3. Relation of confounders in major clinical trials analysing mortality as an endpoint

Study	N	Comparators	Objective	Confounding
UPLIFT	5,992	Tiotropium Placebo	Secondary	None
TORCH	6,112	Salmeterol-fluticasone Placebo	Primary	Interim analysis Smoking status
INSPIRE	1,323	Salmeterol-fluticasone Tiotropium	Secondary	None declared
SUMMIT	16,485	Vilanterol-fluticasone Placebo	Primary	Age Gender
IMPACT	10,355	Vilanterol-fluticasone furoate-umeclidinium Vilanterol- umeclidinium Vilanterol-fluticasone furoate	Exploratory	Treatment group Age Gender
ETHOS	8,509	Budesonide-formoterol-glycopyrronium Formoterol-glycopyrronium Budesonide- formoterol	Secondary	Baseline post-bronchodilator FEV ₁ % predicted Age

FEV: forced expiratory volume.

number of patients who completed the trial was also lower, producing an imbalance in the number of cases analyzed in each group. Most strikingly, in the ETHOS study, not all deaths were counted equally in all groups in the mortality analysis, since in the triple therapy group there were fewer deaths included out of the total deaths that occurred^{58,64}.

One statistical detail which must be added is the fact that the mortality analyses were not adjusted for multiplicity, increasing the possibility of finding a significant result by chance. Finally, a considerable number of patients were receiving ICSs at baseline before starting the trials: about 80% and 67% in ETHOS and IMPACT, respectively. These patients with previous use of ICSs were distributed proportionately among the study groups, so the cases assigned to double bronchodilator therapy suffered a de-escalation of treatment when the ICS was withdrawn. Interestingly, when the analysis was repeated limiting it to patients without this de-escalation, there were no differences

between the groups⁵⁷, which suggests that we may be witnessing an effect influenced, at least partially, by the de-escalation of the treatment, as already outlined by others^{65,66}.

Another relevant aspect is the presence of cases of bronchial asthma. The protocol of these trials indicates that cases with a current diagnosis of asthma were excluded, but not those that were diagnosed with asthma in the past. Notably, we have known for some time that asthma is a chronic disease and that patients who are well controlled with medication or considered to be in remission from their asthma continue to have airway inflammation and bronchial hyperresponsiveness^{67,68}. Interestingly, a high number of cases were receiving ICSs at baseline. Because the researchers did not show any analyses in cases without prior asthma, it is possible that prior history of asthma is a confounding variable in the results. In this same context, it would be expected that an ICS dose escalation would have an effect on therapeutic efficacy, in this case, on

the risk of mortality. Interestingly, the only trial exploring two doses of ICS, the ETHOS study⁵⁸, clearly indicates that it is the higher dose of those explored that achieves this effect. This effect could be attributed to a dose-response relationship or that the study was underpowered for this dose of ICS. In any case, there have been no reports of this dose-response analysis in patients without a previous history of asthma.

Finally, it is necessary to reflect on the clinical relevance of the association. Although reducing the risk of mortality is always a relevant objective, a different vision can be obtained if, instead of focusing on the risk of mortality, we estimate the expected prolongation of survival. The INTREPID pragmatic trial investigated the clinical benefits of triple therapy versus continuing therapy with multiple-inhaler triple therapy for patients with symptomatic COPD in usual clinical practice⁶⁹. The authors observed that using triple therapy in a single device was associated with an additional time of 0.174 life years, which corresponded to approximately two months⁴⁸.

In summary, the results of the studies of triple therapy in reducing the risk of mortality provide highly significant data on this clinical outcome in a clear way for the first time in the history of inhaled treatments for COPD. Furthermore, the results are consistent between different clinical trials with different combinations, suggesting that there is a clear underlying principle. However, the limitations and methodological considerations discussed above and summarized in table 4 indicate that these results should be taken with caution considering that these results are close to non-significance. Accordingly, these data should

TABLE 4. Limitations and methodological concerns on triple therapy trials evaluating mortality

Highly selected population
It may include some asthmatics
It may involve a descaling effect
Secondary or exploratory objectives
Not corrected for multiplicity
Non-balanced groups
Not adjusted for covariates
Intention to treat analysis

FEV: forced expiratory volume.

be considered more as hypothesis-generating information rather than as a result that could be used to support clinical decisions based on an evidence-based approach. In this context, a new clinical trial with triple therapy and mortality as the primary endpoint is therefore needed.

COMPARATIVE STUDIES

In the context of the current and future development of combinations with a triple therapy effect for COPD, it would be desirable to have a direct head-to-head comparison study that would enable us to compile a profile of the patient who benefits most from each of the different options available. Although, unfortunately, up to now there have been no such clinical trials, we do have some studies that allow us to obtain some comparative data.

First, a comparative study funded by Chiesi evaluated the pulmonary deposition of the triple combination of beclomethasone-formoterol-glycopyrronium in an extrafine formulation administered by a pMDI, versus the combination of fluticasone furoate-vilanterol-umeclidinium in an Ellipta device in 20 patients with COPD⁷⁰. As expected, the authors found that the small airways deposition of all

three components was higher in the extrafine beclomethasone combination.

That same year, a systematic literature review and network metanalysis were published on randomized controlled trials using triple therapies⁷¹. This metanalysis was funded by AstraZeneca and the authors' conclusion was that budesonide-based triple therapy had a comparable efficacy to other triple fixed-dose and open triple combination therapies in reducing exacerbations and improving lung function and symptoms in patients with moderate to very severe COPD.

More recently, another network metanalysis was released, on this occasion funded and led by GlaxoSmithKline⁷². The authors reported a favorable efficacy effect with fluticasone furoate triple therapy at 24 weeks in terms of lung function, annualized rate of moderate-severe exacerbations, health status and rescue medication use.

Finally, an independent group from Canada using an observational study approach evaluated budesonide-based and fluticasone-based triple therapies administered in two inhalers on the incidence of exacerbation, mortality and severe pneumonia⁷³. The authors concluded that budesonide-based triple therapy with two inhalers was generally just as successful at reducing exacerbations in a real-world clinical environment for COPD treatment as fluticasone-based triple therapy. However, the budesonide-based triple therapy was linked to a lower incidence of severe pneumonia and perhaps all-cause mortality, although this was found particularly in individuals without a history of exacerbations, who may not need triple therapy.

CONCLUSIONS

The evaluation of triple therapies, either in fixed doses in a single device or in separate devices, provides us with information on the average efficacy that we can expect when applied to patients with COPD who require an escalation of medication due to suffering a symptomatic or high-impact form of the disease. In addition, the unification of triple therapies in a single inhalation device maintains efficacy, with improvements in treatment adherence, real-life effectiveness, and cost. Consequently, triple therapy is a treatment that should be used as part of the escalation of treatment as the disease progresses. Issues currently being debated, such as the formulation of new combinations, the adaptation of other existing combinations for COPD or their clinical impact on relevant outcomes such as mortality, will have to be satisfactorily addressed in the near future to enable us to continue advancing towards the goal of providing personalized medicine in COPD.

ACKNOWLEDGMENTS

The authors would like to thank Simon Armour of the British Academy for his work on improving the English text.

FUNDING

This manuscript was supported by CIBER - Consorcio Centro de Investigación Biomédica en Red-(CIBERES), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación.

DISCLOSURES

The author has received honoraria during the last three years for lecturing, scientific advice, participation in clinical studies or writing publications for (alphabetical order): AstraZeneca, Bial, Boehringer, Chiesi, CSL Behring, Faes, Ferrer, Gebro, Grifols, GSK, Megalabs, Menarini, Novartis.

REFERENCES

1. Global Initiative for Obstructive Lung Disease. 2023 Report. 2023.
2. Figueira Gonçalves JM, Golpe R, Esteban C, Amado Diago C, García Talavera I, Ramos Izquierdo C. Initial Treatment in Chronic Obstructive Pulmonary Disease According to GesEPOC 2021 vs. GesEPOC 2017. Approaching Criteria with GOLD 2021? *Arch Bronconeumol.* 2022;58:364-6.
3. Aaron SD, Vandemheen K, Ferguson D et al. The Canadian Optimal Therapy of COPD Trial: design, organization and patient recruitment. *Can Respir J.* 2004;11:581-5.
4. Aaron SD, Vandemheen KL, Ferguson D et al. Tiotropium in combination with placebo, salmeterol, or fluticasone-salmeterol for treatment of chronic obstructive pulmonary disease: a randomized trial. *Ann Intern Med.* 2007;146:545-55.
5. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease, revised 2011. 2011.
6. Cazzola M, Molimard M. The scientific rationale for combining long-acting beta2-agonists and muscarinic antagonists in COPD. *Pulm Pharmacol Ther.* 2010;23:257-67.
7. Monteagudo M, Nuñez A, Barrecheguren M, Miravitles M. Effectiveness of Treatment With Dual Bronchodilation (LABA/LAMA) Compared With Combination Therapy (LABA/ICS) for Patients With COPD: A Population-Based Study. *Arch Bronconeumol.* 2022;58:699-707.
8. Lopez-Campos JL, Marquez-Martin E, Ortega-Ruiz F. Triple Therapy vs. Triple Therapy in COPD. *Arch Bronconeumol.* 2017;53:419-20.
9. Frith PA, Thompson PJ, Ratnavadivel R et al. Glycopyrronium once-daily significantly improves lung function and health status when combined with salmeterol/fluticasone in patients with COPD: the GLISTEN study, a randomised controlled trial. *Thorax.* 2015;70:519-27.
10. Manoharan A, Morrison AE, Lipworth BJ. Effects of Adding Tiotropium or Aclidinium as Triple Therapy Using Impulse Oscillometry in COPD. *Lung.* 2016;194:259-66.
11. Singh D, Papi A, Corradi M et al. Single inhaler triple therapy versus inhaled corticosteroid plus long-acting beta2-agonist therapy for chronic obstructive pulmonary disease (TRILOGY): a double-blind, parallel group, randomised controlled trial. *Lancet.* 2016;388:963-73.
12. Papi A, Vestbo J, Fabbri L et al. Extrafine inhaled triple therapy versus dual bronchodilator therapy in chronic obstructive pulmonary disease (TRIBUTE): a double-blind, parallel group, randomised controlled trial. *Lancet.* 2018;391:1076-84.
13. Vestbo J, Papi A, Corradi M et al. Single inhaler extrafine triple therapy versus long-acting muscarinic antagonist therapy for chronic obstructive pulmonary disease (TRINITY): a double-blind, parallel group, randomised controlled trial. *Lancet.* 2017;389:1919-29.
14. Virchow JC, Kuna P, Paggiaro P et al. Single inhaler extrafine triple therapy in uncontrolled asthma (TRIMARAN and TRIGGER): two double-blind, parallel-group, randomised, controlled phase 3 trials. *Lancet.* 2019;394:1737-49.
15. Lipson DA, Barnacle H, Birk R et al. FULFIL Trial: Once-Daily Triple Therapy for Patients with Chronic Obstructive Pulmonary Disease. *Am J Respir Crit Care Med.* 2017;196:438-46.
16. Lipson DA, Barnhart F, Brealey N et al. Once-Daily Single-Inhaler Triple versus Dual Therapy in Patients with COPD. *N Engl J Med.* 2018;378:1671-80.
17. Alonso-Pérez T, García-Castillo E, López-Campos JL. Escalation and De-Escalation of Therapy in Chronic Obstructive Pulmonary Disease. Is the Inhaler Important? *Arch Bronconeumol (Engl Ed).* 2021.
18. Hamilton M, Leggett R, Pang C, Charles S, Gillett B, Prime D. In Vitro Dosing Performance of the ELLIPTA® Dry Powder Inhaler Using Asthma and COPD Patient Inhalation Profiles Replicated with the Electronic Lung (eLung™). *J Aerosol Med Pulm Drug Deliv.* 2015;28:498-506.
19. Prime D, de Backer W, Hamilton M et al. Effect of Disease Severity in Asthma and Chronic Obstructive Pulmonary Disease on Inhaler-Specific Inhalation Profiles Through the ELLIPTA(R) Dry Powder Inhaler. *J Aerosol Med Pulm Drug Deliv.* 2015;28:486-97.
20. Ferguson GT, Rabe KF, Martinez FJ et al. Triple therapy with budesonide/glycopyrrrolate/formoterol fumarate with co-suspension delivery technology versus dual therapies in chronic obstructive pulmonary disease (KRONOS): a double-blind, parallel-group, multicentre, phase 3 randomised controlled trial. *Lancet Respir Med.* 2018;6:747-58.
21. Rabe KF, Martinez FJ, Ferguson GT et al. Triple Inhaled Therapy at Two Glucocorticoid Doses in Moderate-to-Very-Severe COPD. *N Engl J Med.* 2020;383:35-48.
22. Vehring R, Lechuga-Ballesteros D, Joshi V, Noga B, Dwivedi SK. Cosuspensions of microcrystals and engineered microparticles for uniform and efficient delivery of respiratory therapeutics from pressurized metered dose inhalers. *Langmuir.* 2012;28:15015-23.
23. Kerstjens HAM, Maspero J, Chapman KR et al. Once-daily, single-inhaler mometasone-indacaterol-glycopyrronium versus mometasone-indacaterol or twice-daily fluticasone-salmeterol in patients with inadequately controlled asthma (IRIDIUM): a randomised, double-blind, controlled phase 3 study. *Lancet Respir Med.* 2020;8:1000-12.
24. Gessner C, Kornmann O, Maspero J et al. Fixed-dose combination of indacaterol/glycopyrronium/mometasone furoate once-daily versus salmeterol/fluticasone twice-daily plus tiotropium once-daily in patients with uncontrolled asthma: A randomised, Phase IIIb, non-inferiority study (ARGON). *Respir Med.* 2020;170:106021.
25. Colthorpe P, Voshaar T, Kieckbusch T, Cuoghi E, Jauernig J. Delivery characteristics of a low-resistance dry-powder inhaler used to deliver the long-acting muscarinic antagonist glycopyrronium. *J Drug Assess.* 2013; 2:11-6.
26. Molimard M, Kottakis I, Jauernig J, Lederhüller S, Nikolaeve I. Performance Characteristics of Breezhaler((R)) and Aerolizer((R)) in the Real-World Setting. *Clin Drug Investig.* 2021;41:415-24.
27. Salvi S, Balki A, Krishnamurthy S et al. Efficacy and safety of single-inhaler triple therapy of glycopyrronium, formoterol and fluticasone in patients with COPD: a double-blind, randomised controlled trial. *ERJ Open Res.* 2021;7.
28. Ambery C, Young G, Fuller T et al. Open-Label, Crossover Study to Determine the Pharmacokinetics of Fluticasone Furoate and Batefenterol When Administered Alone, in Combination, or Concurrently. *Clin Pharmacol Drug Dev.* 2019;8:188-97.
29. Crim C, Gotfried M, Spangenthal S et al. A randomized, controlled, repeat-dose study of batefenterol/fluticasone furoate compared with placebo in the treatment of COPD. *BMC Pulm Med.* 2020;20:119.
30. Koarai A, Yamada M, Ichikawa T, Fujino N, Kawayama T, Sugiura H. Triple versus LAMA/LABA combination therapy for patients with COPD: a systematic review and meta-analysis. *Respir Res.* 2021;22:183.
31. Lopez-Campos JL, Carrasco-Hernandez L, Quintana-Gallego E, Calero-Acuna C, Marquez-Martin E, Ortega-Ruiz F, et al. Triple therapy for COPD: a crude analysis from a systematic review of the evidence. *Ther Adv Respir Dis.* 2019;13:1753466619885522.

32. Lopez-Campos JL, Carrasco-Hernandez L, Roman Rodriguez L, Quintana-Gallego E, Carmona Bernal C, Alcazar Navarrete B. The clinical implications of triple therapy in fixed-dose combination in COPD: from the trial to the patient. *Arch Bronconeumol*. 2020;56:242-8.

33. Long H, Xu H, Janssens JP, Guo Y. Single-inhaler triple vs single-inhaler dual therapy in patients with chronic obstructive pulmonary disease: a meta-analysis of randomized control trials. *Respir Res*. 2021;22:209.

34. Mammen MJ, Lloyd DR, Kumar S et al. Triple Therapy versus Dual or Monotherapy with Long-Acting Bronchodilators for Chronic Obstructive Pulmonary Disease. A Systematic Review and Meta-analysis. *Ann Am Thorac Soc*. 2020;17:1308-18.

35. Benson VS, Pascoe KC, Siddall J, Small M, Müllerová H. Exacerbation Frequency And Eosinophil Counts Among Patients With COPD Currently Prescribed Triple Therapy. *Int J Chron Obstruct Pulmon Dis*. 2019;14: 2711-23.

36. Ashdown HF, Smith M, McFadden E, Pavord ID, Butler CC, Bafadhel M. Blood eosinophils to guide inhaled maintenance therapy in a primary care COPD population. *ERJ Open Res*. 2022;8.

37. Miravittles M, Calle M, Molina J et al. Spanish COPD Guidelines (GesEP-OC) 2021: Updated Pharmacological treatment of stable COPD. *Arch Bronconeumol*. 2022;58:69-81.

38. Lopez-Campos JL, Calle Rubio M, Izquierdo Alonso JL et al. Forum COPD working group consensus on the diagnosis, treatment and follow-up of COPD. *Arch Bronconeumol*. 2021;57:596-9.

39. Donohue JF, Singh D, Munzu C, Kilbride S, Church A. Magnitude of umeclidinium/vilanterol lung function effect depends on monotherapy responses: Results from two randomised controlled trials. *Respir Med*. 2016;112: 65-74.

40. Feldman GJ, Sousa AR, Lipson DA et al. Comparative Efficacy of Once-Daily Umeclidinium/Vilanterol and Tiotropium/Olodaterol Therapy in Symptomatic Chronic Obstructive Pulmonary Disease: A Randomized Study. *Adv Ther*. 2017;34:2518-33.

41. López-Campos JL, Carrasco Hernández L, Ruiz-Duque B, Reinoso-Arija R, Caballero-Eraso C. Step-Up and Step-Down Treatment Approaches for COPD: A Holistic View of Progressive Therapies. *Int J Chron Obstruct Pulmon Dis*. 2021;16:2065-76.

42. Singh D, Corradi M, Spinola M et al. Triple therapy in COPD: new evidence with the extrafine fixed combination of beclomethasone dipropionate, formoterol fumarate, and glycopyrronium bromide. *Int J Chron Obstruct Pulmon Dis*. 2017;12:2917-28.

43. Lai CC, Chen CH, Lin CYH, Wang CY, Wang YH. The effects of single inhaler triple therapy vs single inhaler dual therapy or separate triple therapy for the management of chronic obstructive pulmonary disease: a systematic review and meta-analysis of randomized controlled trials. *Int J Chron Obstruct Pulmon Dis*. 2019;14:1539-48.

44. Bremner PR, Birk R, Brealey N, Ismaila AS, Zhu CQ, Lipson DA. Single-inhaler fluticasone furoate/umeclidinium/vilanterol versus fluticasone furoate/vilanterol plus umeclidinium using two inhalers for chronic obstructive pulmonary disease: a randomized non-inferiority study. *Respir Res*. 2018;19:19.

45. van der Palen J, Moeskops-van Beurden W, Dawson CM, James WY, Preece A, Midwinter D, et al. A randomized, open-label, single-visit, crossover study simulating triple-drug delivery with Ellipta compared with dual inhaler combinations in patients with COPD. *Int J Chron Obstruct Pulmon Dis*. 2018;13:2515-23.

46. Yu AP, Guerin A, Ponce de Leon D et al. Therapy persistence and adherence in patients with chronic obstructive pulmonary disease: multiple versus single long-acting maintenance inhalers. *J Med Econ*. 2011;14:486-96.

47. Lopez-Campos JL, Quintana Gallego E, Carrasco Hernandez L. Status of and strategies for improving adherence to COPD treatment. *Int J Chron Obstruct Pulmon Dis*. 2019;14:1503-15.

48. Halpin DMG, Kendall R, Shukla S et al. Cost-Effectiveness of Single- versus Multiple-Inhaler Triple Therapy in a UK COPD Population: The INTREPID Trial. *Int J Chron Obstruct Pulmon Dis*. 2022;17:2745-55.

49. Alcazar-Navarrete B, Jamart L, Sanchez-Covisa J, Juarez M, Graefenhain R, Sicras-Mainar A. Clinical Characteristics, Treatment Persistence, and Outcomes Among Patients With COPD Treated With Single- or Multiple-Inhaler Triple Therapy: A Retrospective Analysis in Spain. *Chest*. 2022; 162:1017-29.

50. Cohen M, Casas A, Zabert G et al. Updated Strategic Plan of the Latin American Thoracic Association (ALAT). "The ten commandments for 2021-2026 quinquennial". *Arch Bronconeumol*. 2021;57:617-20.

51. Golpe R, Dacal-Rivas D, Blanco-Cid N, Castro-Añón O. Need for Epidemiological Studies on Chronic Obstructive Pulmonary Disease in Rural Spain. *Arch Bronconeumol*. 2021;57:614-5.

52. Calverley PM, Anderson JA, Celli B et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. *N Engl J Med*. 2007;356:775-89.

53. Tashkin DP, Celli B, Senn S et al. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. *N Engl J Med*. 2008;359:1543-54.

54. Wedzicha JA, Calverley PM, Seemungal TA et al. The prevention of chronic obstructive pulmonary disease exacerbations by salmeterol/fluticasone propionate or tiotropium bromide. *Am J Respir Crit Care Med*. 2008;177: 19-26.

55. Celli BR. Predictors of mortality in COPD. *Respir Med*. 2010;104:773-9.

56. Vestbo J, Anderson JA, Brook RD et al. Fluticasone furoate and vilanterol and survival in chronic obstructive pulmonary disease with heightened cardiovascular risk (SUMMIT): a double-blind randomised controlled trial. *Lancet*. 2016;387:1817-26.

57. Lipson DA, Crim C, Criner GJ, Day NC, Dransfield MT, Halpin DMG, et al. Reduction in All-Cause Mortality with Fluticasone Furoate/Umeclidinium/Vilanterol in Patients with Chronic Obstructive Pulmonary Disease. *Am J Respir Crit Care Med*. 2020;201:1508-16.

58. Martinez FJ, Rabe KF, Ferguson GT et al. Reduced All-Cause Mortality in the ETHOS Trial of Budesonide/Glycopyrronate/Formoterol for COPD: A Randomized, Double-Blind, Multi-Center Parallel-Group Study. *Am J Respir Crit Care Med*. 2020.

59. Vestbo J, Fabbri L, Papi A et al. Inhaled corticosteroid containing combinations and mortality in COPD. *Eur Respir J*. 2018;52.

60. Soler-Cataluna JJ, Martinez-Garcia MA, Roman Sanchez P, Salcedo E, Navarro M, Ochando R. Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. *Thorax*. 2005;60:925-31.

61. Casanova C, Cote C, de Torres JP et al. Inspiratory-to-total lung capacity ratio predicts mortality in patients with chronic obstructive pulmonary disease. *Am J Respir Crit Care Med*. 2005;171:591-7.

62. Divo M, Cote C, de Torres JP et al. Comorbidities and risk of mortality in patients with chronic obstructive pulmonary disease. *Am J Respir Crit Care Med*. 2012;186:155-61.

63. Nishimura K, Izumi T, Tsukino M, Oga T. Dyspnea is a better predictor of 5-year survival than airway obstruction in patients with COPD. *Chest*. 2002;121:1434-40.

64. López-Campos JL, Fernández-Villar A, Ruano-Ravina A. Triple-Therapy Trials for Chronic Obstructive Pulmonary Disease: Methodological Considerations in the Mortality Effect. *Am J Respir Crit Care Med*. 2021;203:925-6.

65. Suissa S. Perplexing mortality data from triple therapy trials in COPD. *Lancet Respir Med*. 2021;9:684-5.

66. Suissa S, Dell'Aniello S, Ernst P. Discontinuation of Inhaled Corticosteroids from Triple Therapy in COPD: Effects on Major Outcomes in Real World Clinical Practice. *COPD*. 2022;19:133-41.

67. Boulet LP, Turcotte H, Brochu A. Persistence of airway obstruction and hyperresponsiveness in subjects with asthma remission. *Chest*. 1994;105: 1024-31.

68. Boulet LP, Turcotte H, Plante S, Chakir J. Airway function, inflammation and regulatory T cell function in subjects in asthma remission. *Can Respir J*. 2012;19:19-25.

69. Halpin DMG, Worsley S, Ismaila AS et al. INTREPID: single- versus multiple-inhaler triple therapy for COPD in usual clinical practice. *ERJ Open Res*. 2021;7.

70. Usmani OS, Scichilone N, Mignot B et al. Airway Deposition of Extrafine Inhaled Triple Therapy in Patients with COPD: A Model Approach Based on Functional Respiratory Imaging Computer Simulations. *Int J Chron Obstruct Pulmon Dis.* 2020;15:2433-40.

71. Ferguson GT, Darken P, Ballal S et al. Efficacy of Budesonide/Glycopyrronium/Formoterol Fumarate Metered Dose Inhaler (BGF MDI) Versus Other Inhaled Corticosteroid/Long-Acting Muscarinic Antagonist/Long-Acting beta(2)-Agonist (ICS/LAMA/LABA) Triple Combinations in COPD: A Systematic Literature Review and Network Meta-analysis. *Adv Ther.* 2020; 37:2956-75.

72. Ismaila AS, Haeussler K, Czira A et al. Fluticasone Furoate/Umeclidinium/Vilanterol (FF/UMECH/VI) Triple Therapy Compared with Other Therapies for the Treatment of COPD: A Network Meta-Analysis. *Adv Ther.* 2022;39: 3957-78.

73. Suissa S, Dell'Aniello S, Ernst P. Fluticasone-Based versus Budesonide-Based Triple Therapies in COPD: Real-World Comparative Effectiveness and Safety. *COPD.* 2022;19:109-17.

74. Singh D, Schroder-Babo W, Cohuet G et al. The bronchodilator effects of extrafine glycopyrronium added to combination treatment with beclometasone dipropionate plus formoterol in COPD: A randomised crossover study (the TRIDENT study). *Respir Med.* 2016;114:84-90.

75. Siler TM, Kerwin E, Sousa AR, Donald A, Ali R, Church A. Efficacy and safety of umeclidinium added to fluticasone furoate/vilanterol in chronic obstructive pulmonary disease: Results of two randomized studies. *Respir Med.* 2015;109:1155-63.

76. Cazzola M, Ando F, Santus P et al. A pilot study to assess the effects of combining fluticasone propionate/salmeterol and tiotropium on the air-flow obstruction of patients with severe-to-very severe COPD. *Pulm Pharmacol Ther.* 2007;20:556-61.

77. Singh D, Brooks J, Hagan G, Cahn A, O'Connor BJ. Superiority of "triple" therapy with salmeterol/fluticasone propionate and tiotropium bromide versus individual components in moderate to severe COPD. *Thorax.* 2008; 63:592-8.

78. Ma X, Xu J, Yang J. Efficacy of tiotropium bromide combined with different doses of fluticasone plus salmeterol DPI in the treatment of stable COPD. *Am J Transl Res.* 2021;13:13815-24.

79. Fang LZ, Liang X, Zhang JQ et al. [Combination of inhaled salmeterol/fluticasone and tiotropium in the treatment of chronic obstructive pulmonary disease: a randomised controlled trial]. *Zhonghua Jie He He Hu Xi Za Zhi.* 2008;31:811-4.

80. Hoshino M, Ohtawa J. Effects of adding salmeterol/fluticasone propionate to tiotropium on airway dimensions in patients with chronic obstructive pulmonary disease. *Respirology.* 2011;16:95-101.

81. Hanania NA, Crater GD, Morris AN, Emmett AH, O'Dell DM, Niewoehner DE. Benefits of adding fluticasone propionate/salmeterol to tiotropium in moderate to severe COPD. *Respir Med.* 2012;106:91-101.

82. Jung KS, Park HY, Park SY et al. Comparison of tiotropium plus fluticasone propionate/salmeterol with tiotropium in COPD: a randomized controlled study. *Respir Med.* 2012;106:382-9.

83. Hoshino M, Ohtawa J. Effects of tiotropium and salmeterol/fluticasone propionate on airway wall thickness in chronic obstructive pulmonary disease. *Respiration.* 2013;86:280-7.

84. Maltais F, Maher DA, Pepin V et al. Effect of fluticasone propionate/salmeterol plus tiotropium versus tiotropium on walking endurance in COPD. *Eur Respir J.* 2013;42:539-41.

85. Saito T, Takeda A, Hashimoto K, Kobayashi A, Hayamizu T, Hagan GW. Triple therapy with salmeterol/fluticasone propionate 50/250 plus tiotropium bromide improve lung function versus individual treatments in moderate-to-severe Japanese COPD patients: a randomized controlled trial - Evaluation of Airway sGaw after treatment with tripLE. *Int J Chron Obstruct Pulmon Dis.* 2015;10:2393-404.

86. Siler TM, Kerwin E, Singletary K, Brooks J, Church A. Efficacy and Safety of Umeclidinium Added to Fluticasone Propionate/Salmeterol in Patients with COPD: Results of Two Randomized, Double-Blind Studies. *COPD.* 2016;13:1-10.

87. Welte T, Miravitles M, Hernandez P et al. Efficacy and tolerability of budesonide/formoterol added to tiotropium in patients with chronic obstructive pulmonary disease. *Am J Respir Crit Care Med.* 2009;180:741-50.

88. Yasui H, Inui N, Furuhashi K et al. Multidetector-row computed tomography assessment of adding budesonide/formoterol to tiotropium in patients with chronic obstructive pulmonary disease. *Pulm Pharmacol Ther.* 2013;26:336-41.

89. Williamson PA, Short PM, Clearie KL et al. Paradoxical trough effects of triple therapy with budesonide/formoterol and tiotropium bromide on pulmonary function outcomes in COPD. *Chest.* 2010;138:595-604.

90. Bolukbas S, Eberlein M, Eckhoff J, Schirren J. Short-term effects of inhalative tiotropium/formoterol/budesonide versus tiotropium/formoterol in patients with newly diagnosed chronic obstructive pulmonary disease requiring surgery for lung cancer: a prospective randomized trial. *Eur J Cardiothorac Surg.* 2011;39:995-1000.

91. Lee SD, Xie CM, Yunus F et al. Efficacy and tolerability of budesonide/formoterol added to tiotropium compared with tiotropium alone in patients with severe or very severe COPD: A randomized, multicentre study in East Asia. *Respirology.* 2016;21:119-27.

92. Zhao D, Ling C, Guo Q, Jin J, Xu H. Efficacy and safety of tiotropium bromide combined with budesonide/formoterol in the treatment of moderate to severe chronic obstructive pulmonary disease. *Exp Ther Med.* 2018;16:4578-84.