

Prolonged Weaning and Respiratory Intensive Care Units. A Narrative Review

Nicolino Ambrosino, MD, FERS¹ and Michele Vitacca, MD, FERS²

¹Respiratory Rehabilitation, Institute of Montescano, Istituti Clinici Scientifici Maugeri IRCCS, Montescano, Pavia; ²Respiratory Rehabilitation, Institute of Lumezzane, Istituti Clinici Scientifici Maugeri IRCCS, Lumezzane, Brescia. Italy

ABSTRACT

Progress in management, while improving hospital survival of critically ill individuals in intensive care units (ICU), has also increased the prevalence of individuals needing prolonged weaning from mechanical ventilation (PMV). Respiratory intensive care units (RICUs) may provide an environment also for these individuals. A narrative review searching literature was performed in PubMed and Scopus databases of publications between 1990 and 2022 using the keywords "chronic critical illness", "non-invasive mechanical ventilation", "physiotherapy and ICU", "RICU", "tracheostomy", "ventilator assisted individuals", "weaning mechanical ventilation". Results show that there are recent developments in ventilatory strategies, protocols, physiotherapy, and location for individuals needing PMV to be managed also in RICU. In conclusion, present medical training of clinicians and locations like ICU do not appear to be enough to face problems posed by PMV. RICU may be helpful.

Keywords: Critical illness. Intensive care unit. Mobilisation. Noninvasive ventilation. Tracheostomy. Weaning units.

INTRODUCTION

One side effect of increasing worldwide life expectancy is the high prevalence of chronic diseases and related “chronic critical illness”¹ with up to twenty million people annually requiring admission to intensive care units (ICUs). Progress in management has improved the short-term survival of these individuals at the price of a growing prevalence of individuals needing partial or complete dependence on mechanical ventilation with clinical and organizational problems as well as high human and health resource consumption. In order to minimize the prevalence of long-term ventilator-assisted individuals (VAIs) we must better manage those needing weaning from prolonged mechanical ventilation (PMV)².

Among other activities, respiratory intensive care units (RICU) may provide an environment for the management of individuals with severe acute respiratory failure (ARF) avoiding the dangerous “underassistance” in the ward and the unnecessary “overassistance” in the ICU. Activities in RICU may include non-invasive respiratory support for ARF, weaning from PMV, tracheostomy care and decannulation and discharge planning for VAIs³. Their usefulness has been shown in the recent COVID-19 pandemic⁴⁻⁷. This narrative review analyses the use of RICU in weaning individuals needing PMV.

METHODS

Literature search of randomized controlled trials (RCTs), observational studies, systematic reviews, and meta-analyses published between 1990 and 2022 in English, in PubMed, and Scopus databases using the keywords

“chronic critical illness”, “non-invasive ventilation (NIV)”, “PMV”, “physiotherapy and ICU”, “RICU”, “tracheostomy”, “VAIs”, “weaning mechanical ventilation”. In this review we will use the terms “prolonged weaning” and “prolonged mechanical ventilation” with the same meaning.

Factors associated with PMV are summarised in table 1².

DEFINITIONS AND EPIDEMIOLOGY

Prolonged mechanical ventilation/prolonged weaning

There is great variability in terminology and definitions:

- National Association for Medical Direction of Respiratory Care: “the need for more than 21 consecutive days of mechanical ventilation for more than six hours/day”⁸.
- European Respiratory Society (ERS) Task Force: “the need of more than seven days of weaning after the first spontaneous breathing trial”: up to 14% of individuals admitted to ICU for mechanical ventilation^{9,10}.
- Weaning according to a New Definition (WIND) study: “successful extubation after more than three spontaneous breathing trials or taking more than seven days”: 10% of individuals receiving mechanical ventilation with a 29.8% mortality¹¹.

A systematic review on the long-term survival of PMV individuals reported a 59–62% one-year mortality. Pooled mortality at hospital discharge was 29%. However, only 19% were

TABLE 1. Factors associated with PMV

Systemic
– Chronic diseases, comorbidities,
– Nutrition and metabolic problems
– Severity of illness
– Sepsis
Cardio-vascular function
Critical illness neuromyopathy
Respiratory
– Unresolved respiratory causes of ARF
– Diaphragm weakness or dysfunction
– Imbalance between WOB and respiratory muscle reserve
– Tracheo-bronchial obstruction
– Ineffective cough and secretion retention
Complications of therapy
– Ventilator-associated pneumonia, infection
– Length and modalities of mechanical ventilation
– Tracheostomy
– Sedation
– Lack of early mobilisation
Cognitive
– Sleep deprivation
– Anxiety/depression

ARF: acute respiratory failure; WOB: work of breathing.

discharged home and only 50% were successfully weaned from mechanical ventilation¹².

Strategies for successful weaning

There has been recent progress in weaning from mechanical ventilation, to be used also in RICUs: ventilatory strategies, weaning protocols, early mobilisation and physiotherapy, specialised weaning units.

VENTILATORY STRATEGIES

The most used ventilatory strategies to shorten weaning from mechanical ventilation are progressive reduction in the level of pressure support ventilation (PSV) and progressive longer

periods of spontaneous breathing trials through the tube¹³. Multicentric comparative studies in the ICUs gave conflicting results, reporting advantages with either one, or other, or equivalent results¹⁴.

Synchronized intermittent mandatory ventilation (the patient can breathe spontaneously between ventilator-delivered breaths), neurally adjusted ventilatory assist (NAVA), NIV and high-flow oxygen (HFO) have also been used.

NAVA¹⁵ has been used during weaning from mechanical ventilation in ICU and, compared to PSV, resulted in reduced patient-ventilator asynchronies, and in a breathing pattern more similar to spontaneous ventilation¹⁶.

Nava et al.¹⁷ were the first to use NIV in an RICU to shorten time of weaning from and avoid the complications of invasive mechanical ventilation in individuals with acute exacerbations of chronic obstructive pulmonary disease (COPD). Noninvasive mechanical ventilation during weaning was as effective as invasive mechanical ventilation in improving the breathing pattern, reducing the work of breathing with adequate gas exchange¹⁸. The recent ERS/American Thoracic Society (ATS) guidelines¹⁹ suggest that NIV should be used to facilitate weaning from mechanical ventilation in individuals with hypercapnic ARF only in centres with adequate experience using NIV in this setting¹⁹.

More recently, the use of HFO²⁰ compared with conventional oxygen therapy reduced the risk of re-intubation within 72 hours in extubated patients at low risk for reintubation²¹. Among high-risk extubated adults, HFO was not inferior to NIV in preventing reintubation

and post-extubation ARF²¹. The sequential use of NIV and HFO has also been suggested²².

VENTILATORY STRATEGIES IN PMV

In RICUs with clinicians trained to manage PMV, a prospective multicenter RCT in individuals with COPD requiring mechanical ventilation for more than 15 days found that progressive reduction in the level of PSV or progressive longer periods of spontaneous breathing through the tube were equally effective in weaning success and hospital mortality rate, duration of ventilatory assistance and length of stay²³. Another study found that the use of the spontaneous breathing trial protocol with a tracheostomy collar resulted in shorter median weaning time, without any effect on six- and twelve- month survival²⁴.

Neurally adjusted ventilatory assist. A study performed in an RICU/weaning unit confirmed that NAVA eliminates the risk of overassistance. However, it also indicated that the advantages of NAVA over PSV were smaller when PSV was carefully set avoiding excessive support²⁵. A systematic review suggests that the NAVA mode may improve the rate of weaning success compared with other partial support modes for difficult-to-wean individuals²⁶.

Non invasive ventilation. A prospective study included chronically critically ill individuals admitted to Spanish RICUs²⁷. The weaning method consisted of progressive periods of spontaneous breathing trials. Patients were transferred to NIV when it was impossible to increase the time of spontaneous breathing trial beyond 18 hours. 86% of patients were

successfully weaned, out of whom 21% needed NIV during the weaning process²⁷. In another study performed in a RICU-weaning unit, NIV applied to individuals failing weaning from PMV was feasible and could facilitate the decannulation process. Individuals successfully completing this process showed good survival rates and few complications²⁸.

WEANING PROTOCOLS

Trials have demonstrated that application of the protocol or guidelines for the weaning process may lead to a decrease in weaning time irrespective of the mode used and are suggested by official guidelines^{29,30}.

EARLY MOBILIZATION AND PHYSIOTHERAPY

Overall, about 25% of individuals needing PMV develop generalized and persistent muscle weakness (critical illness neuromyopathy)³¹. Muscle deconditioning occurs very early with bed rest, involving more calf and other antigravity than other muscles, such as those involved in grip strength. Muscle atrophy is associated with decline in muscle mass, strength and aerobic efficiency, and the predominant muscle composition changes from type IIa, with higher aerobic capacity, to type IIb fibres³²⁻³⁴.

Evidence of benefits from early mobilisation and physiotherapy has progressed during the past 15 years with recommendations including mobilization and muscle electrical stimulation^{35,36}. For adults mechanically ventilated for > 24 h, the ATS/CHEST guidelines suggest using protocols of early mobilisation, without any

superiority of a protocol over another³⁰. Early physiotherapy in RICU has also been proposed in the recent Covid-19 pandemic³⁷.

Physiotherapy techniques commonly used for early mobilization and airway clearance are shown below²:

Muscle weakness

- Passive and active-assisted mobilisation.
- Continuous rotational therapy.
- Postures.
- Active limb exercise.
- Peripheral muscle training.
- Neuromuscular electrical stimulation.
- Respiratory muscle training.

Cough augmentation techniques

- Manual hyperinflation.
- Percussion and vibrations.
- Mechanical in-exsufflation.
- Percussive ventilation.

SPECIALISED WEANING UNIT

To take care of difficult-to-wean patients, recently the problem of appropriate ICUs utilisation

has been faced by proposing different locations and modalities of assistance^{2,38}:

- Respiratory intensive care units within acute care hospitals³⁹, less expensive than ICUs, but usually offering adequate levels of assistance, may also provide multidisciplinary rehabilitation, using non invasive evaluation tools^{7,40-41}. Some of these RICUs may work also as “step down” units for PMV and as a bridge to home-care programs or long-term care facilities⁴².
- Alternatively, individuals needing PMV may be transferred from acute care hospitals to specialised regional long-term weaning units (LWUs), often located within rehabilitation hospitals with trained teams (e.g., nurses, respiratory therapists, nutritionists, psychologists, speech and occupational therapists). Variable mortality and weaning success rates have been reported^{39,42-44}.

More recently, modalities of tele-monitoring have been proposed as a means to manage difficult-to-wean patients and VAIs^{45,46}.

LONG-TERM OUTCOMES

There are few published data on discharge home rates, use of NIV, or long-term survival in RICUs or specialized LWUs^{39,42,47-49}.

TRACHEOSTOMY AND DECANNUULATION

Respiratory intensive care units should also deal with tracheostomy, which seems to

increase in individuals needing PMV with conflicting results⁵⁰⁻⁵².

Decannulation is the final step of liberation from PMV. Although there exist several protocols, universally accepted ones are lacking as well as RCTs on this critical issue⁵³. Training in pulmonological techniques may help⁵⁴. There is a need for accepted protocols for time and modalities of decannulation, also in the view that lack of decannulation of conscious tracheostomized patients before ICU discharge to the general ward was associated with higher mortality⁵⁵.

CONCLUSION

Moving from widespread use of NIV, the complexity of the interventions performed in RICUs has increased significantly over the last 15 years. These locations may provide specialized environment also for the weaning from PMV, tracheostomy care, and decannulation and discharge planning for VAIs.

DISCLOSURES

The authors have nothing to disclose.

REFERENCES

1. Kontis V, Bennett JE, Mathers CD, Li G, Foreman K, Ezzati M. Future life expectancy in 35 industrialised countries: projections with a Bayesian model ensemble. *Lancet*. 2017;389:1323-35.
2. Ambrosino N, Vitacca M. The patient needing prolonged mechanical ventilation: a narrative review. *Multidiscip Respir Med*. 2018;13:6.
3. Renda T, Scala R, Corrado A, Ambrosino N, Vaghi A. Adult pulmonary intensive and intermediate care units: the Italian Thoracic Society (ITS-AI-PO) position paper. *Respiration*. 2021;100:1027-37.
4. Pierucci P, Ambrosino N, Di Lecce V et al. Prolonged active prone positioning in spontaneously breathing non-intubated patients with COVID-19-associated hypoxemic acute respiratory failure With $\text{PaO}_2/\text{FiO}_2 > 150$. *Front Med (Lausanne)*. 2021;8:626321.
5. De Vita N, Scotti L, Cammarota G et al. Predictors of intubation in COVID-19 patients treated with out-of-ICU continuous positive airway pressure. *Pulmonology*. 2022;28:173-80.
6. Tonelli R, Pisani L, Tabbi L et al. Early awake proning in critical and severe COVID-19 patients undergoing noninvasive respiratory support: A retrospective multicenter cohort study. *Pulmonology*. 2022;28:181-92.
7. Vega ML, Dongilli R, Olaizola G et al. COVID-19 Pneumonia and ROX index: Time to set a new threshold for patients admitted outside the ICU. *Pulmonology*. 2022;28:13-17.
8. MacIntyre NR, Epstein SK, Carson S, Scheinhorn D, Christopher K, Muldoon S. Management of patients requiring prolonged mechanical ventilation: report of a NAMDRC consensus conference. *Chest*. 2005;128:3937-54.
9. Boles JM, Bion J, Connors A et al. Weaning from mechanical ventilation. *Eur Respir J*. 2007;29:1033-56.
10. Funk GC, Anders S, Breyer MK et al. Incidence and outcome of weaning from mechanical ventilation according to new categories. *Eur Respir J*. 2010; 5:88-94.
11. Béduneau G, Pham T, Schortgen F et al. Epidemiology of weaning outcome according to a new definition. The WIND study. *Am J Respir Crit Care Med*. 2017;95:772-83.
12. Damuth E, Mitchell JA, Bartock JL, Roberts BW, Trzeciak S. Long-term survival of critically ill patients treated with prolonged mechanical ventilation: a systematic review and meta-analysis. *Lancet Respir Med*. 2015;3: 544-53.
13. Ouellette DR, Patel S, Girard TD et al. Liberation from mechanical ventilation in critically ill adults: an official American College of Chest Physicians/American Thoracic Society clinical practice guideline. Inspiratory pressure augmentation during spontaneous breathing trials, protocols minimizing sedation, and noninvasive ventilation immediately after extubation. *Chest*. 2017;151:166-80.
14. Ladeira MT, Vital FM, Andriolo RB, Andriolo BN, Atallah AN, Peccin MS. Pressure support versus T-tube for weaning from mechanical ventilation in adults. *Cochrane Database Syst Rev*. 2014;CD006056...
15. Sinderby C, Navalesi P, Beck J et al. Neural control of mechanical ventilation in respiratory failure. *Nat Med*. 1999;5:1433-6.
16. Ferreira JC, Diniz-Silva F, Moriya HT, Alencar AM, Amato MBP, Carvalho CRR. Neurally adjusted Ventilatory assist (NAVA) or pressure support ventilation (PSV) during spontaneous breathing trials in critically ill patients: a crossover trial. *BMC Pulm Med*. 2017;17:139.
17. Nava S, Ambrosino N, Cliní E et al. Noninvasive mechanical ventilation in the weaning of patients with respiratory failure due to chronic obstructive pulmonary disease. A randomized, controlled trial. *Ann Intern Med*. 1998;128:721-8.
18. Vitacca M, Ambrosino N, Cliní E et al. Physiological response to pressure support ventilation delivered before and after extubation in patients not capable of totally spontaneous autonomous breathing. *Am J Respir Crit Care Med*. 2001;164:638-41.
19. Rochwerg B, Brochard L, Elliott MW et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. *Eur Respir J*. 2017;50:1602426.
20. Vega ML, Pisani L. Nasal high flow oxygen in acute respiratory failure. *Pulmonology*. 2021;27:240-7.
21. Hernandez G, Vaquero C, Gonzalez P et al. Effect of postextubation high-flow nasal cannula vs conventional oxygen therapy on reintubation in low-risk patients. A randomized clinical trial. *JAMA*. 2016;315:1354-61.
22. Wang SY, Liang HW, Lu GS et al. Effect of sequential high-flow nasal cannula oxygen therapy and non-invasive positive-pressure ventilation in patients with difficult weaning from mechanical ventilation after extubation on respiratory mechanics. *Ann Transl Med*. 2021;9:1251.
23. Vitacca M, Vianello A, Colombo D et al. Comparison of two methods for weaning patients with chronic obstructive pulmonary disease requiring mechanical ventilation for more than 15 days. *Am J Respir Crit Care Med*. 2001;64: 225-30.

24. Jubran A, Grant GJB, Duffner LA, Collins EG, Lanuza DM, Hoffman LA. Effect of pressure support vs unassisted breathing through a tracheostomy collar on weaning duration in patients requiring prolonged mechanical ventilation. *JAMA*. 2013;309:671-7.

25. Vagheggiini G, Mazzoleni S, Vlad Panait E, Navalesi P, Ambrosino N. Physiologic response to various levels of pressure support and NAVA in prolonged weaning. *Respir Med*. 2013;107:1748-54.

26. Yuan X, Lu X, Chao Y et al. Neurally adjusted ventilatory assist as a weaning mode for adults with invasive mechanical ventilation: a systematic review and meta-analysis. *Crit Care*. 2021;25:222.

27. Sancho J, Servera E, Jara-Palomares L et al. Noninvasive ventilation during the weaning process in chronically critically ill patients. *ERJ Open Res*. 2016;2:00061-2016.

28. Ceriana P, Nava S, Vitacca M et al. Noninvasive ventilation during weaning from prolonged mechanical ventilation. *Pulmonology*. 2019;25:328-33.

29. Blackwood B, Burns KE, Cardwell CR, O'Halloran P. Protocolized versus nonprotocolized weaning for reducing the duration of mechanical ventilation in critically ill adult patients. *Cochrane Database Syst Rev*. 2014;11:CD006904.

30. Girard TD, Alhazzani W, Kress JP et al. An official American Thoracic Society/American College of Chest Physicians Clinical Practice Guideline: liberation from mechanical ventilation in critically ill adults. Rehabilitation protocols, ventilator liberation protocols, and cuff leak tests. *Am J Respir Crit Care Med*. 2017;195:120-33.

31. Fan E, Cheek F, Chlan L et al. An official American Thoracic Society clinical practice guideline: the diagnosis of intensive care unit acquired weakness in adults. *Am J Respir Crit Care Med*. 2014;190:1437-46.

32. Puthucheary ZA, Rawal J, McPhail M et al. Acute skeletal muscle wasting in critical illness. *JAMA*. 2013;310:1591-600.

33. Vanhorebeek I, Latronico N, Van den Berghe G. ICU-acquired weakness. *Intensive Care Med*. 2020;46:637-53.

34. Marchioni A, Tonelli R, Sdanganelli A et al. Prevalence and development of chronic critical illness in acute patients admitted to a respiratory intensive care setting. *Pulmonology*. 2020;26:151-8.

35. Gosselink R, Bott J, Johnson M et al. Physiotherapy for adult patients with critical illness: recommendations of the European Respiratory Society and European Society of Intensive Care Medicine Task Force on physiotherapy for critically ill patients. *Intensive Care Med*. 2008;34:1188-99.

36. Hanekom S, Gosselink R, Dean E et al. The development of a clinical management algorithm for early physical activity and mobilization of critically ill patients: synthesis of evidence and expert opinion and its translation into practice. *Clin Rehabil*. 2011;25:771-87.

37. Polastri M, Danieli F, Tagariello F. Assisted mobilisation in critical patients with COVID-19. *Pulmonology*. 2021;S2531-0437(21)00037-4.

38. Ambrosino N. Prolonged mechanical ventilation: new facilities and new models of care. *Rev Port Pneumol*. 2012;18:211-3.

39. Carpenè N, Vagheggiini G, Panait E, Gabbielli L, Ambrosino N. A proposal of a new model for long-term weaning: respiratory intensive care unit and weaning center. *Respir Med*. 2010;104:1505-11.

40. Ambrosino N, Guaracino F. Unusual applications of noninvasive ventilation. *Eur Respir J*. 2011;38:440-9.

41. Peixoto AO, Costa RM, Uzun R, Fraga AMA, Ribeiro JD, Marson FAL. Applicability of lung ultrasound in COVID-19 diagnosis and evaluation of the disease progression: A systematic review. *Pulmonology*. 2021;27:529-62.

42. Lone NI, Walsh TS. Prolonged mechanical ventilation in critically ill patients: epidemiology, outcomes and modelling the potential cost consequences of establishing a regional weaning unit. *Crit Care*. 2011;15:R102.

43. Polverino E, Nava S, Ferrer M et al. Patients' characterization, hospital course and clinical outcomes in five Italian respiratory intensive care units. *Intensive Care Med*. 2010;36:137-42.

44. Vagheggiini G, Vlad EP, Mazzoleni S, Bortolotti U, Guaracino F, Ambrosino N. Outcomes for difficult-to-wean subjects after cardiac surgery. *Respir Care*. 2015;60:56-62.

45. Ambrosino N, Vitacca M, Dreher M et al. Task force report. ERS statement. Tele-monitoring of ventilator-dependent patients: a European Respiratory Society statement. *Eur Resp J*. 2016;48:648-63.

46. Ambrosino N, Pierucci P. Using Telemedicine to monitor the patient with chronic respiratory failure. *Life (Basel)*. 2021;11:1113.

47. Nava S, Rubini F, Zanotti E, Ambrosino N, Bruschi C, Vitacca M. Survival and prediction of successful ventilator weaning in COPD patients requiring mechanical ventilation for more than 21 days. *Eur Respir J*. 1994;7:1645-52.

48. Davies MG, Quirrell TG, Oscroft NS, Clutterbuck SP, Shneerson JM, Smith IE. Hospital outcomes and long-term survival after referral to a specialized weaning unit. *Br J Anaesth*. 2017;118:563-9.

49. Dettmer MR, Damuth E, Zarbiv S, Mitchell JA, Bartock JL, Trzeciak S. Prognostic factors for long-term mortality in critically ill patients treated with prolonged mechanical ventilation: a systematic review. *Crit Care Med*. 2017;45:69-74.

50. Cox CE, Carson SS, Holmes GM, Howard A, Carey TS. Increase in tracheostomy for prolonged mechanical ventilation in North Carolina, 1993- 2002. *Crit Care Med*. 2004;32:2219-26.

51. Trouillet JL, Luyt CE, Guiguet M et al. Early percutaneous tracheotomy versus prolonged intubation of mechanically ventilated patients after cardiac surgery: a randomized trial. *Ann Intern Med*. 2011;154:373-83.

52. Marchese S, Corrado A, Scala R, Corrao S, Ambrosino N. Tracheostomy in patients with long-term mechanical ventilation: a survey. *Respir Med*. 2010;104:749-53.

53. Lanini B, Binazzi B, Romagnoli I et al. Tracheostomy decannulation in severe acquired brain injury patients: The role of flexible bronchoscopy. *Pulmonology*. 2021;S2531-0437(21)00115-X.

54. Tsonas AM, Botta M, Horn J et al. Practice of tracheostomy in patients with acute respiratory failure related to COVID-19 - Insights from the PRACTIC-VENT-COVID study. *Pulmonology*. 2022;28:18-27.

55. Martinez GH, Fernandez R, Casado MS, Cuena R, Lopez-Reina P, Zamora S. Tracheostomy tube in place at intensive care unit discharge is associated with increased ward mortality. *Respir Care*. 2009;54:1644-52.