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Abstract

Idiopathic pulmonary fibrosis (IPF) is an age-related progressive lung disease character-
ized by excessive deposition of extracellular matrix (ECM) produced by activated myofi-
broblasts. Traditionally, myofibroblast activation has been thought to be exclusively driv-
en by soluble biochemical stimuli, such as pro-fibrotic growth factors and cytokines. 
However, the mechanical properties of the fibrotic ECM including matrix stiffness have 
recently gained more attention given its ability to drive myofibroblast activation inde-
pendently from soluble mediators. The study of fibroblast mechanobiology is an active area 
of research in IPF and focuses on understanding how matrix stiffness is sensed and trans-
lated into biochemical signaling via the so-called mechanotransduction pathways, which 
ultimately regulate profibrotic gene expression, ECM synthesis and myofibroblast survival. 
Here, we summarize the molecular mechanisms promoting mechano-activation of myofi-
broblasts in lung fibrosis and the potential of treating IPF with “mechanotherapeutics”, a 
novel class of anti-fibrotic therapeutic agents. (BRN Rev. 2021;7(2):96-108)
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INTRODUCTION

Lung fibrosis is defined as scarring in the 
lungs. It is generally induced by repeated 
or chronic injury to the alveolar epithelial 
cells, which leads to activation of inflamma-
tory responses and subsequent fibrotic tis-
sue repair1. Upon lung injury, pulmonary 
fibroblasts get activated and become extra-
cellular matrix (ECM)-secreting myofibro-
blasts, which are responsible for restoring 
the normal tissue structure by secreting, 
contracting and remodeling of the ECM2. 
During the resolution of the normal tissue 
repair program, myofibroblasts are cleared 
out by immune cells after their mission is 
completed3,4. However, they persist in the 
context of lung fibrosis, maintaining their 
activated state and promoting progressive 
scarring of the lungs5. Thus, myofibroblast 
persistence is a hallmark of lung fibrosis 
and their numbers have been shown to cor-
relate with disease stage and progression in 
idiopathic pulmonary fibrosis (IPF)6, the 
most common and aggressive type of pul-
monary fibrotic diseases. The continuous 
presence of activated myofibroblasts leads 
to ECM built up, which is also crosslinked 
and stiffened by matrix crosslinking en-
zymes. We and others have shown that ECM 
stiffness is dramatically increased during 
the development and progression of lung 
fibrosis7. Such alteration in the ECM me-
chanical properties is now recognized as a 
major driver of lung fibrogenesis by pro-
moting mechano-activation of fibroblasts8,9. 
In this Review, we will discuss the mechano-
biology of lung fibrosis and summarize nov-
el anti-fibrotic strategies for the treatment of 
lung fibrosis with the so-called mechanother-
apeutics.

IPF

IPF is a progressive, irreversible, and typi-
cally lethal lung fibrotic disease without any 
known cause. It is thought to be initiated by 
alveolar epithelium injury caused by a com-
plex interplay of genetic factors and environ-
mental insults, followed by inflammation, 
activation of myofibroblasts and excessive 
ECM deposition within the lung parenchy-
ma10. The damaged lung tissue becomes stiff 
and thick, ultimately limiting the amount of 
oxygen that gets into the blood. IPF is associ-
ated with high mortality, with a reported me-
dian survival of two-three years post-diagno-
sis, and the incidence of the disease is rising 
rapidly worldwide10, with doubling of preva-
lence between 2000 and 201211.

Currently, there is no cure for IPF. In 2014, 
two novel medicines, pirfenidone and nin-
tedanib, were approved for the treatment of 
IPF. These drugs modestly slow down the 
progression of IFP but do not halt or reverse 
it12,13. In addition, neither of the two medi-
cines elevate patients’ perceived quality of 
life, and both agents confer substantial side 
effects (nausea and rash with pirfenidone; di-
arrhea and abnormal liver function with nin-
tedanib)14. Therefore, novel therapeutics are 
highly needed for the treatment of lung fibro-
sis in patients with IPF.

MECHANOBIOLOGY OF LUNG 
FIBROSIS

Over the last 20 years, the vast majority of 
therapeutic strategies aimed at treating lung 
fibrosis is focused on targeting biochemical 
factors including pro-fibrotic growth factors 
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and cytokines15,16. More recently, biophysical 
factors such as mechanical forces and matrix 
stiffness have gained increasing recognition as 
critical regulators of lung fibrosis development 
and progression17,18. The mechanobiology of 
lung fibrosis is gaining increasing attention 
not only because it is revealing novel disease 
mechanisms but also by providing new thera-
peutic targets for the treatment of lung fibro-
sis. One of the hallmarks of lung fibrosis is the 
dramatic increase in matrix rigidity or stiff-
ness, which is largely regulated by activated 
myofibroblasts9,19-21. Stiffness is defined as the 
resistance to deformation in response to ap-
plied force. It is typically measured by Young’s 
elastic modulus (E), which is expressed as the 
tensile stress (force per unit area) divided by 
the strain (deformation). The unit is Pascals 
(Pa, N/m2). In normal lung tissue, the tissue 
stiffness is usually maintained between 0.5 to 
2 kPa. This is critical during tissue homeosta-
sis since the ECM composition and rigidity pro-
vide a matrix scaffold that regulates normal 
physiological processes such as cell adhesion, 
proliferation and migration22,23. Fibroblasts con-
stantly secrete, degrade and remodel the ECM 
in order to maintain the integrity of the matrix, 
both biochemically and biophysically24. They 
conduct mechanical measurements, a process 
known as mechanosensation, by actively pull-
ing on their environment and evaluating wheth-
er mechanical homeostasis has been disrupted 
through specific positive and negative feedback 
mechanisms8. For instance, evidence has shown 
that ECM degradation leads to increased ECM 
synthesis and deposition by fibroblasts. On the 
other hand, matrix stiffness modulates expres-
sion of collagen-degrading enzymes such as 
MMP-1 in fibroblasts21,25,26. Besides ECM com-
position, fibroblasts further adjust matrix stiff-
ness by secreting matrix crosslinking enzymes 

including lysyl oxidases (LOXs) and transglu-
taminases (TGs)27. Together, fibroblasts main-
tain the ECM stiffness within a normal range, 
which is necessary for normal physiological 
processes. However, such homeostatic feed-
back mechanism between fibroblasts and ECM 
is disrupted upon lung injury. In this context, 
fibroblasts are activated to myofibroblasts, a 
cellular phenotype characterized by increased 
ECM synthesis and contractility28,29. In the ear-
ly stages following injury, myofibroblasts ac-
tively secrete ECM proteins to provide a tissue 
scaffold for normal repair events such as ep-
ithelial cell migration30. In later stages of tissue 
repair, myofibroblasts facilitate wound closure 
and re-epithelialization with their enhanced 
contractile abilities, which is conferred by up-
regulation of -smooth muscle actin (SMA)31,32. 
Of note, matrix stiffness is a major driver of 
SMA expression during fibroblast-to-myofibro-
blast transdifferentiation during wound heal-
ing7,17,18. The increased ECM stiffness not only 
promotes fibroblast mechano-activation but 
also their survival. In this regard, decreased 
matrix stiffness during the resolution of the nor-
mal tissue repair program has been shown to 
induce myofibroblast apoptosis5. However, this 
mechanical checkpoint goes awry in fibrotic 
disorders, creating a vicious positive feedback 
loop between ECM stiffness and myofibroblasts 
that results in myofibroblast persistence, patho-
logical ECM deposition and fibrosis33. In this 
amplification loop, myofibroblasts extensively 
secrete type I collagen and covalently cross-link 
the ECM via LOX and TG2, resulting in col-
lagen fibers that are more resistant to degra-
dation. This stabilized ECM leads to a dra-
matic increase in matrix stiffness, which can 
be up to 40 kPa at the late stage of lung fibro-
sis21,34,35. Moreover, matrix stiffness can also ac-
tivate surrounding quiescent fibroblasts through 
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mechano-transduction pathways, amplifying 
fibrotic responses. In summary, this mechan-
ical positive feedback loop is a crucial driving 
force during the development and progres-
sion of lung fibrosis. In this Review, we de-
scribe the biological and molecular mecha-
nisms behind this pathological mechanism in 
IPF and discuss novel therapeutic strategies 
to break this vicious positive feedback loop, 
which have been shown to ameliorate lung 
fibrosis in preclinical models. 

MECHANOTHERAPEUTICS  
FOR THE TREATMENT OF LUNG 
FIBROSIS

Targeting matrix crosslinking enzymes

Two major families of matrix crosslinking en-
zymes, LOX and TG, have been shown to be 
upregulated in patients with IPF36,37. Mem-
bers of the LOX family comprise LOX, and 
LOX-like LOXL1, LOXL2, LOXL3 and LOXL4. 
The central function of LOX enzymes is to 
catalyze the covalent crosslinking of collagen 
and other ECM proteins by oxidizing pep-
tidyl lysine to form peptidyl α-aminoadip-
ic-δ-semialdehyde. These aldehyde residues 
can spontaneously condense with neighbor-
ing peptidyl lysines or peptidyl aldehyde, 
leading to the formation of insoluble aggre-
gates found in fibrillar collagen, thus stabiliz-
ing the ECM (Fig. 1). It has also been shown 
that the crosslinking of ECM enhances fibro-
blast proliferation and inhibits matrix deg-
radation in lung fibrosis38. LOX family mem-
bers are upregulated in fibrotic diseases, 
especially LOX/LOXL1/LOXL239,40. Pan-in-
hibition of LOX enzymes with the non-spe-
cific inhibitor (BAPN) treats lung fibrosis in 

mice41. LOXL1 knockout mice are similarly 
protected from lung fibrosis in preclinical 
models42. Simtuzumab, a humanized mono-
clonal antibody against LOXL2, has been 
shown to treat lung fibrosis in mice and was 
recently tested in phase 2 trials to treat lung 
fibrosis in patients with definite IPF43. Unfor-
tunately, simtuzumab did not improve pro-
gression-free survival in patients with IPF, 
and Gilead Sciences terminated its phase 2 
clinical study due to lack of efficacy44. The 
failure of this trial is attributed to lack of tis-
sue penetration by simtuzumab in human 
IPF lungs. Novel small molecules targeting 
LOXL2 are currently under investigation45,46. 
Among them, two selective small molecule 
LOXL2 inhibitors: PXS-5382A and PXS-5338K, 
developed by Pharmaxis, have been recently 
announced ready for phase 2 trials in patients 
with IPF and NASH (ACTRN12617001444370 
and ACTRN12617001564347). Another pan-
LOX Inhibitor (PXS-5505A) by the same 
pharmaceutical company is ready to enter 
phase 2 studies in patients with myelofibrosis 
(ACTRN12619000332123). TG2, also known as 
tissue transglutaminase, has been also shown to 
be highly upregulated during lung fibrosis37,47. 
In humans, TG2 expression and activity have 
been shown increased in lung tissue from pa-
tients with IPF compared with normal control 
individuals47,48. TG2 knockout mice are protect-
ed from lung fibrosis in mice and pharmacolog-
ical TG2 inhibition similarly treats preclinical 
lung fibrosis37,47. Pharmacological inhibition of 
TG2 has been shown to treat bleomycin-induced 
pulmonary fibrosis in mice through inhibit-
ing EMT49. Zedira recently announced that their 
ZED1227, a first-in-class tissue transglutaminase 
inhibitor, has shown good safety and tolera-
bility and is undergoing phase 2a, double-blind 
trails for Celiac disease (2017-002241-30); and 
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they plan to target organ fibrosis including lung, 
liver, and kidney fibrosis.

Targeting fibroblast  
mechano-activation 

As described above, the stiffness of fibrotic 
lungs (15–100 kPa) is much higher than the 

normal lung parenchyma (0.5–2 kPa)9,50,51. We 
and others have shown that tissue stiffening in 
IPF contributes to the onset and progression of 
lung fibrosis by influencing fibroblast behavior 
and function, in particular by promoting fibro-
blast mechano-activation and survival18,21,28,52. 
The study of fibroblast mechanobiology is an 
active area of research in IPF and focuses on 
understanding how matrix stiffness is sensed 

Figure 1. Mechanoactivation of fibroblasts by matrix stiffness. Matrix stiffness is increased dramatically during the development of lung 
fibrosis. Fibroblasts sense changes in matrix stiffness through mechanosensors on the cell membrane including integrins and mechanosensitive 
ion channels such as Piezo channels. Integrin-mediated mechanotransduction is a primary mechanism by which cells translate 
mechanical signals into biochemical signaling pathways. Mechanotransduction pathways activate downstream signaling including FAK, 
ROCK, MRTF-A/B, and YAP/TAZ, which drives the expression of profibrotic genes such as Type I collagen and αSMA. Type I collagen can 
be further stabilized by two major matrix crosslinking enzymes including lysyl oxidases (LOX) and transglutaminases (TG2), further 
increasing matrix stiffness. Once activated, myofibroblasts exert higher traction forces that promote mechano-activation of the potent 
profibrotic cytokine TGF-β1 through integrins αvβ6 and αvβ1, amplifying the fibrotic response via TGF-β receptor signaling. Together, 
mechanical forces generate a progressive positive feed-forward loop in which enhanced matrix deposition and tissue stiffening lead  
to fibroblast mechano-activation, which further secretes excessive ECM and promotes matrix stiffening (adapted from Tschumperlin DJ  
et al.7 with permission from Elsevier, © 2020 Elsevier Inc. All rights reserved). 
ECM: extracellular matrix; FAK: focal adhesion kinase; IPF: idiopathic pulmonary fibrosis; LAP: latency-associated peptide; LOX: lysyl 
oxidase; LTPB: latent TGF-β1 binding proteins; miR: microRNA; MRTF: myocardin-related transcription factor; ROCK: rho-associated 
protein kinase; TAZ: transcriptional coactivator with PDZ-binding motif; TGF-β1: transforming growth factor β1; YAP: yes-associated protein.
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and translated into biochemical signaling 
pathways, ultimately affecting profibrotic gene 
expression, ECM synthesis and survival. The 
molecular mechanisms beneath fibroblast mech-
anoactivation are not fully understood, but 
two successive molecular steps, mechanosens-
ing and mechanotransduction, have been rec-
ognized as major regulators of fibroblast mech-
anobiology7,53,54. Mechanosensing is a cellular 
process in which cells actively assess the stiff-
ness of the matrix53,55. ECM receptors called 
integrins play a central role in cellular mech-
anosensing56,57. Two members of the integrin 
family, αvβ1 and αvβ3, have been shown to 
play central roles at transducing mechanical 
cues into biochemical signaling in fibroblasts. 
Recent studies have shown that αvβ3 integrin 
regulates fibroblast contractility and matrix 
stiffening58, and that pharmacological inhibi-
tion of αvβ3 integrin attenuates fibrosis in 
mice59. Similarly, αvβ1 integrin has been shown 
to promote tissue fibrogenesis in vivo by inte-
grating fibrogenic mechanical cues60. Accord-
ingly, pharmacological and genetic inhibition 
of β1 integrin have been reported to amelio-
rate fibrosis in mouse models60. Integrins phys-
ically link the actin cytoskeleton to the ECM 
through cell-matrix adhesion complexes termed 
“focal adhesions” (FAs)56 (Fig.1). Focal adhe-
sions are membrane-associated multi-protein 
complexes that transmit cell-exerted forces to 
the matrix61. They are involved in multiple cel-
lular processes such as cell survival, prolifera-
tion and motility62. Focal adhesions proteins 
include focal adhesion kinase (FAK), paxillin, 
vinculin and talin, which undergo mechanical 
activation in response to force-induced protein 
stretching63. FAs dynamically sample matrix 
stiffness by applying pulling forces to the ECM 
through actomyosin contraction64. On soft ma-
trices, cell-mediated traction forces are low and 

focal adhesion proteins remain intact. Howev-
er, on stiff matrices as in pathological fibrosis, 
cell exerted traction forces are high, ultimately 
stretching and activating focal adhesion pro-
teins56,65. Whereas the biology of focal adhesion 
proteins in fibroblast mechanotranduction re-
mains to be fully elucidated, it is well estab-
lished that FAK undergoes dynamic changes 
in response to force-induced protein stretching. 
Mechanical stretching of FAK leads to the ac-
tivation of its catalytic domain and subsequent 
phosphorylation of downstream signaling 
proteins67, which is implicated in the initia-
tion of mechanotransduction signaling67,68. We 
and others have shown that FAK is consis-
tently activated in myofibroblasts during lung 
fibrosis67,69 and that pharmacological inhibi-
tion of FAK mitigates lung fibrosis in mice67. 
Defactinib, a FAK inhibitor developed by Ve-
rastem Oncology (VS-6063, PF-04554878), has 
entered phase 2 trials to investigate its anti-fi-
brotic effects in patients with pancreatic can-
cer (NCT02758587). Although FAK inhibitors 
have shown potent anti-fibrotic effects in pre-
clinical models and are now being investigated 
in humans, fibrogenic signaling pathways acti-
vated by FAK in fibroblasts are not fully under-
stood and remain actively investigated. Mecha-
no-activated FAK drives myofibroblast activation 
via Rho/Rho-associated protein kinase (ROCK) 
mediated yes-associated protein (YAP)/tran-
scriptional coactivator with PDZ-binding mo-
tif (TAZ) and myocardin-related transcrip-
tion factor (MRTF) pathways70 and prevents 
myofibroblast apoptosis by upregulating the 
anti-apoptotic protein B-cell lymphoma-ex-
tra-large (BCL-XL)5,52. Rho/ ROCK pathway is 
a well-studied downstream signaling of FAK71,72. 
In vitro, pharmacological, and genetic inhibi-
tion of ROCK prevents myofibroblast differen-
tiation induced by matrix stiffness and global 
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haploinsufficient ROCK1 and ROCK2 mice are 
protected from lung fibrosis in bleomycin-in-
duced mouse model71-73. Currently, ROCK inhib-
itors have not entered human clinical trials for 
the treatment of organ fibrosis although a pan-
ROCK inhibitor, Fasudil, has been approved for 
treatment of coronary and cerebral vasospasm 
in humans74. The use of pan-ROCK inhibitors 
for treating fibrosis is under debate due to its 
potential side effect of systemic hypotension75. 
The development of isoform-specific ROCK 
inhibitors might solve the safety issue. KD025 
(also called SLX-2119), the first specific ROCK2 
inhibitor, has been developed by the biophar-
maceutical company Kadmon and is currently 
tested in phase 2 study (NCT03640481). Mech-
anotransduction pathways ultimately lead to 
activation of transcriptional factors and co-ac-
tivators that drive pro-fibrotic gene expression. 
Two sets of transcriptional coactivators: YAP 
and TAZ and MRTF-A and MRTF-B, are rec-
ognized as major mechanotransducers76,77. A 
growing body of evidence has shown that the 
activity of the transcriptional coactivators YAP 
and TAZ, effector proteins of the Hippo path-
way that shuttle from the cytoplasm to the nu-
cleus to control gene expression, is regulated 
by matrix stiffness78. On soft matrices, the 
large tumor suppressor kinase 1/2 (LATS1/2) 
phosphorylates YAP/TAZ on residues S127 and 
S381, leading to sequestration of YAP/TAZ in 
the cytoplasm and subsequent degradation 
via the ubiquitin proteasome system79. Howev-
er, under high mechanical loading, YAP/TAZ 
avoid cytoplasmic retention and degradation 
by yet unknown mechanisms, leading to their 
translocation to the nucleus80 where they bind 
to transcription factors including TEA domain 
(TEAD) and SMADs, ultimately promoting ex-
pression of pro-fibrotic genes such as connec-
tive tissue growth factor (CTGF), α-SMA and 

type I collagen81-83 (Fig.1). Thus, mechanical 
YAP/TAZ signaling directly drives myofibro-
blast activation, proliferation, and ECM secre-
tion. In addition, we have shown that YAP/TAZ 
signaling also promotes the expression of the 
pro-survival BCL-2 protein BCL-XL, thus pro-
moting myofibroblast evasion of apoptosis52. 
In vivo, TAZ-heterozygous mice showed pro-
tection from lung fibrosis in bleomycin-in-
duced lung fibrosis model82, and specific de-
pletion of YAP/TAZ in fibroblasts displayed 
reduced kidney fibrosis in mice84,85. Multiple 
strategies targeting YAP/TAZ pathways are 
under investigation including selective inhi-
bition of YAP/TAZ via dopamine receptor D1 
agonist86 and stimulation of YAP degradation 
through multiple hydroxymethylglutaryl-co-
enzyme  A  (HMG-CoA) reductase inhibitors 
(statins)87. In addition to YAP/TAZ, both 
MRTF-A and MRTF-B have been also report-
ed as critical mediators of mechanotrans-
duction pathways. MRTF-A and MRTF-B are 
transcriptional coactivators linking actin dy-
namics to serum response factor (SRF)-medi-
ated gene transcription88. MRTF-A and -B are 
predominantly localized to the cytoplasm and 
only translocate to the nucleus upon stimula-
tion. Nuclear translocation of MRTF is con-
trolled by Rho GTPases via actin dynamics 
stimulated by matrix stiffness89. MRTFs bind 
monomeric G-actin molecules via three N-ter-
minal RPEL motifs, sequestering them in the 
cytoplasm89. Rho-mediated actin polymeriza-
tion and subsequent formation of filamentous 
F-actin releases MRTFs, resulting in increased 
nuclear accumulation where they bind SRF to 
drive transcription of pro-fibrotic genes such 
as α-SMA90 (Fig.1). MRTF-A depletion in mice 
conferred protection from lung, cardiac and 
kidney fibrosis in preclinical models77,91-93, and 
that inhibition of MRTF-A/B with the small 
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molecule inhibitor CCG-203971 diminished 
lung and skin fibrosis in mice93,94. 

In addition to integrins, other mechanosensitive 
receptors have been shown to regulate fibro-
blast mechano-activation in the context of tissue 
fibrosis33. For instance, the family of transient 
receptor potential channels (TRP) has been in-
volved in fibroblast mechanosensing and tis-
sue fibrogenesis95. TRP channel family major-
ly includes TRPA, TRPC, TRPM, TRPML and 
TRPV96, and they are involved in various types 
of sensory reception, including thermoreception, 
chemoreception, mechanoreception, and photo-
reception97-99. In particular, the mechanosensitive 
transient receptor potential vanilloid 4 chan-
nel (TRPV4) has been reported to mediate stiff-
ness-activation of lung and cardiac fibroblasts in 
vitro100,101. Accordingly, global TRPV4 knockout 
mice showed protected against bleomycin-in-
duced lung fibrosis in mice100. Moreover, the cal-
cium-activated Piezo1 and 2 channels have been 
similarly shown to be mechanically activated in 
human diseases102,103. Piezo1 has been reported 
to be the primary sensor of mechanical stress in 
suppressive myeloid cells and genetic ablation of 
Piezo1 in mice protects against cancer and poly-
microbial sepsis by diminishing immunosup-
pressive activities of myeloid cells104. It has 
been recently shown that mechanically activated 
Piezo1 enhances the production of profibrotic 
cytokine interleukin-6 (IL-6) through activating 
p38 mitogen-activated protein kinase (MAPK) 
in cardiac fibroblasts105. 

Targeting mechanical control  
of TGF-ß1 activation

TGF-β1 is the most studied pro-fibrotic cyto-
kine and recognized as the master regulator of 

fibrosis due to its ability to drive tissue fibro-
sis in vivo in multiple organs106. It has been 
shown that TGF-β1 promotes myofibroblasts 
activation, resistance to apoptosis and ECM 
synthesis107. TGF-β1 is a very pleiotropic cyto-
kine involved in immune suppression and im-
munotolerance108, therefore its activity and avail-
ability must be tightly regulated. TGF-β1 is 
secreted as a latent cytokine and stored in the 
ECM. During its synthesis and modification in 
the Golgi, mature TGF-β1 homodimers are as-
sociated with latency-associated peptide (LAP) 
non-covalently109. The TGF-β1-LAP complex is 
then secreted with chaperon proteins Latent 
TGF-β Binding Proteins (LTBP) by forming the 
large latent complex (LLC) through disulfide 
bonds. LLC is anchored to the ECM by LTBP 
but also connected to cells via integrin recogni-
tion of the Arg-Gly-Asp (RGD) motif within the 
LAP. Immobilization of TGF-β1 by the LLC pre-
vents TGF-β1 activation and binding to TGF-β 
receptors110, providing a repository of latent 
TGF-β1 that can be timely activated in response 
to various factors. It has been shown that acti-
vation of latent TGF-β1 is mediated by traction 
forces exerted by cells on the ECM111. Integ-
rin-mediated cell contraction is transmitted to 
the LAP and induces a conformation change 
that liberates active TGF-β1 (Fig. 1). Important-
ly, cell-mediated activation of TGF-β1 is directly 
related to the degree of matrix stiffness112. Thus, 
greater amounts of active TGFβ1 are released 
on stiff matrices compared with soft ones111. 
During this process, integrins play a major role 
acting as transmembrane tethers that link the 
cell cytoskeleton to ECM-bound latent TGF-β1. 
Ultimately, integrins transmit cell generated 
forces by the actin cytoskeleton to the ECM, 
which can deform the TGF-β1 LLC and release 
biologically active TGF-β1. In the context of lung 
fibrosis, αvβ6 integrin expressed in type II 
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epithelial cells and αvβ1 integrin in myofi-
broblasts have been shown to activate latent 
TGF-β1113. In this regard, β6 integrin knockout 
mice failed to activate latent TGF-β1 in vivo 
and showed protection from lung and kidney 
fibrosis113-115. Accordingly, anti-αvβ6 integrin 
blocking antibody (clone 6.3G9) has been shown 
to prevent TGF-β1 activation in vivo and atten-
uated lung, liver, and kidney fibrosis in mouse 
models116-118. However, a humanized anti-αvβ6 
integrin monoclonal antibody STX-100 from 
Biogen has been recently stopped in phase 2b 
trials in patients with IPF due to safety con-
cerns (NCT01371305). Recently, a selective small 
inhibitor, GSK3008348, is reported to have high 
affinity to αvβ6 in human IPF lungs and down-
regulates pro-fibrotic TGFβ signaling119. Never-
theless, the role of αv integrin in latent TGF-β1 
activation in fibrotic disease continues to be 
actively investigated. A fibroblast-specific de-
pletion of αv-integrin has been shown to pro-
tect mice from lung, kidney, and liver fibrosis, 
and that inhibition of αv integrins with a pan-
αv integrin inhibitor (CWHM 12) attenuates 
fibrosis both in the liver and lungs120. More-
over, an anti-αv integrin monoclonal antibody 
Abituzumab, developed by Merck, has been 
evaluated in Phase 2 trials in patients with 
Systemic Sclerosis-associated Interstitial Lung 
Disease (SSc-ILD); however, the trial was re-
cently terminated due to difficulties in re-
cruiting patients who met the eligibility crite-
ria of the trial (NCT02745145). More recently, 
a dual selective small molecule inhibitor tar-
geting αvβ6/αvβ1 integrins PLN-74809, devel-
oped by Pliant Therapeutics, is currently being 
evaluated in Phase 2a trials in patients with IPF 
(NCT04072315). Indalo’s selective integrin an-
tagonist against αvβ1/αvβ3/αvβ6, IDL-2965, 
shows a safe and favorable pharmacokinetics 
in Phase 1 trials in healthy people and has now 

entered into multiple-ascending doses trials 
in patients with IPF (NCT03949530). Other in-
tegrin families are also under active research, 
e.g. α6-integrin is shown to mediate matrix 
stiffness-regulated myofibroblast invasion and 
facilitate lung fibrosis121.

CONCLUSIONS

Matrix stiffness remarkedly increases during 
lung fibrogenesis due to excessive ECM depo-
sition and crosslinking. Traditionally, increased 
matrix stiffness has been regarded as a con-
sequence of organ fibrosis, however increas-
ing evidence in more recent years has demon-
strated that such mechanical factor acts as a 
major driver of tissue fibrogenesis. Matrix 
stiffness promotes lung fibrosis through sev-
eral different means including mechanoacti-
vation of myofibroblasts through integrin-me-
diated mechanotransduction pathways and 
activation of the pro-fibrotic cytokine TGF-β1. 
The study of mechanobiology in lung fibrosis 
is an emerging research field that has pros-
pered with noticeable achievements includ-
ing the identification of novel therapeutic tar-
gets for the treatment of lung fibrosis as well 
as the development of small molecules and 
biologics regarded as mechanotherapeutics. 
This first generation of mechanotherapeu-
tics mainly targets ECM crosslinking enzymes 
including LOXs/TG2, αv integrins, mechano-
sensors such as FAK and ROCK and mecha-
notransducers including YAP/TAZ or MRTFs; 
which has been shown to ameliorate organ 
fibrosis in multiple preclinical models and are 
currently being investigated in clinical trials 
in patients with IPF and other fibrotic-related 
diseases (Table 1). Despite these advancements, 
it is undoubted that the mechanobiology of 
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lung fibrosis is far from being fully under-
stood and deserves further investigation in 
order to unravel the full of spectrum of mech-
anisms by which biophysical cues control the 
pathological biology of multiple cell types 
involved in lung fibrosis. In this regard, a 
challenging but critical question facing the 
development of mechanotherapeutics is to 
target cell-specific mechanisms involved in 
the development of lung fibrosis without af-
fecting homeostatic functions of healthy cells. 
Since matrix stiffness is specifically increased 
during the development of lung fibrosis, ac-
tivation of pro-fibrotic mechanical signaling 
pathways is only expected during the devel-
opment of the disease, thus opening a poten-
tial therapeutic window. Together, the identi-
fication of cell-specific mechanotransduction 
pathways involved in lung fibrosis could lead 
to the development of more selective drugs 

with a higher therapeutic index, which could 
represent a real game changer in treatment of 
lung fibrosis in the future.
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Table 1. Mechanotherapeutics for the treatment of IPF

Mechanism Target Drugs Company Status

ECM crosslinking Lysyl Oxidases Simtuzumab (LOXL2 antibody) Gilead Sciences Terminated

PXS-5382A and PXS-5338K (LOXL2 inhibitors) Pharmaxis Phase 2

PXS-5505 (pan-LOX Inhibitor) Pharmaxis Phase 2 for pancreatic cancer

Transglutaminases ZED 1227 Zedira Phase 2 for celiac disease

Mechanotransduction FAK Defactinib Verastem Oncology Phase 2 for pancreatic cancer

ROCK KD025 Kadmon Phase 2

MRTFs CCG-222740, CCG-203971, CCG-1423 Preclinical

YAP/TAZ DRD1 agonists, HMG-CoA reductase inhibitors Preclinical

Integrin-mediated 
TGF-β1 activation

Integrin αv Abituzumab (anti-αv integrin antibody) Merck Terminated

αvβ6 STX-100 Biogen Terminated

αvβ6/αvβ1 PLN-74809 Pliant Phase 2

αvβ1/αvβ3/αvβ6 IDL-2965 Indalo Phase 1

Epigenetic modulators miR-21 RG-012 Sanofi Phase 1 for Alport syndrome

ECM: extracellular matrix; FAK: focal adhesion kinase; IPF: idiopathic pulmonary fibrosis; LOXL2: lysyl oxidase-like 2; miR: microRNA; MRTF: myocardin-related transcription 
factor; ROCK: rho-associated protein kinase; TAZ: transcriptional coactivator with PDZ-binding motif; TGF-β1: transforming growth factor β1; YAP: yes-associated protein.
Adapted from Tschumperlin DJ et al.7 with permission from Elsevier, © 2020 Elsevier Inc. All rights reserved.
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