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Abstract

Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous disease 
that can benefit from novel approaches to understanding its evolution and divergent tra-
jectories. Artificial intelligence (AI) has revolutionized how we can use clinical, imaging, 
and molecular data to understand and model complex systems. AI has shown impressive 
results in areas related to automated clinical decision making, radiological interpretation 
and prognostication. The unique nature of COPD and the accessibility to well-phenotyped 
populations result in an ideal scenario for AI development. This review provides an intro-
duction to AI and deep learning and presents some recent successes in applying AI in 
COPD. Finally, we will discuss some of the opportunities, challenges, and limitations for 
AI applications in the context of COPD. (BRN Rev. 2020;6(2):144-60)
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INTRODUCTION

Chronic obstructive pulmonary fisease (COPD) 
is a complex pathological condition character-
ized by an admixture of small airway inflam-
mation, obliteration, and parenchymal injury 
leading to its destruction. Those processes are 
complicated by an aberrant inflammatory re-
sponse that has spill-over effects to other sys-
tems leading to a complex comorbidities rela-
tion1. Although COPD is clinically characterized 
by expiratory airflow obstruction, the com-
plexity of the different endotypes that conform 
the disease defines the heterogeneity in symp-
toms, therapeutic responses and outcomes2. 
This marked heterogeneity makes COPD a 
syndrome more than a single condition that 
requires a multidisciplinary approach to un-
derstand the basis of the disease and divergent 
trajectories to discern the different endophe-
notypes that could lead to more homogenous 
groups of patients exhibiting common mech-
anisms.

Artificial intelligence (AI) has revolutionized 
how we can use clinical, imaging, and molec-
ular data to understand and model complex 
systems. This has led to an explosion of ap-
plications across multiple disciplines, includ-
ing healthcare. Although applied AI still is an 
emerging field in many areas, it has shown 
exciting and impactful results in the diagnosis 
of different conditions using raw data sources 
like diagnostic images3,4. COPD has not been 
“immune” to this trend, and the research com-
munity has embraced AI as a novel modeling 
paradigm to harness COPD heterogeneity. This 
review focuses on the emerging AI applica-
tions in COPD that enable new venues for its 
characterization, diagnostication, and prog-
nostication. A brief initial introduction to AI 

and fundaments of deep neural networks will 
be provided as the prelude to a review of 
emerging applications of AI.

What is AI and why now?

Artificial intelligence dates back to the mid-
’50s and the beginning of the digitalization of 
the information. It refers to a wide range of 
techniques aimed at mimicking and enhanc-
ing some aspects of human cognitive capabil-
ities like vision or speech recognition. Much 
of the clinical data that we handle in digital 
form is amenable to be exploited by modeling 
techniques to determine relations between in-
puts and an outcome or discover the internal 
structure of the data without explicit knowl-
edge of those relations. The power of AI to 
uncover new relationships in complex data-
sets has driven the high interest in healthcare 
and medical science. The power of AI is bet-
ter realized when applied to multi-contextu-
al/multi-dimensional information: electron-
ic medical records, laboratory and functional 
testing, imaging, and multi-omics data. With-
in those complex data scenarios, AI has shown 
a remarkable capacity to deliver unprecedent-
ed capabilities to recognize trends that can be 
translated into complex tasks like a diagnosis 
or derived new knowledge from the discov-
ery relations.

Although the theoretical bases for AI meth-
ods have been established during the last de-
cades, AI applications have exploded over the 
previous five years, driven by multiple fac-
tors. First, the maturity of the approaches that 
can exploit non-linear relation in the data has 
been vital. The most significant example is 
the resurgence of deep neural networks, a 
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type of machine learning based on a compu-
tation model inspired in the neural brain ar-
chitecture with millions of interconnected 
computational units. Second, advances in op-
timization and regularization techniques have 
made tractable to fit models with a large num-
ber of parameters to a limited set of training 
data points. Third, the consolidation of meth-
ods in well-maintained open-source libraries 
has empowered the use of AI techniques to a 
broader community, including non-experts in 
the field with multidisciplinary skills. Finally, 
specialized computing architectures based on 
Graphics Processing Units (GPUs) have deliv-
ered the necessary computing power to train 
advanced models within reasonable amounts 
of time.

Deep neural networks 

Machine learning is the subfield of AI de-
voted to the development of computational 
constructs to capture data relations that can 
be used to make autonomous decisions. Ma-
chine learning covers a wide range of tech-
niques from Bayesian methods to decision 
trees techniques. Deep learning, a type of 
machine learning, is revolutionizing domains 
from computer vision and image understand-
ing to speech recognition5,6. Deep neural net-
works are one of the main techniques behind 
the explosion of AI. One of the most notable 
applications has been the emergence of au-
tonomous driving solutions built on top of 
this new breed of approaches. Deep learning 
allows an algorithm to “program” itself by 
learning the underlying features that are re-
quired for the task at hand, unlike conven-
tional methods in which a model is learned 
on pre-design features. The predecessors of 

these new approaches were neural networks 
inspired by the computational construct of a 
biological neural system7. The neuron acts as 
a generalized linear model regressor. Com-
plex modeling beyond linear regression is 
achieved by connecting multiple neural lay-
ers effectively creating a hierarchical model. 
The most interesting mathematical property 
of neural networks is that they can approx-
imate any continuous function, known as 
the universal approximation theorem8. The 
implications of this theorem were profound 
as it creates the theoretical basis to design a 
system that can map a complex input (a chest 
computerized tomography [CT] image or an 
RNA expression panel, for example) to a con-
tinuous target (for example, a functional mea-
surement like forced expiratory flow in one 
second [FEV1] or a probability of diagnosis) 
in a non-linear fashion. Unlike traditional 
biostatistical modeling that is based on linear 
relationships between independent variables 
and an outcome, neural networks can de-
scribe complex non-linear relations, therefore 
providing a powerful and flexible modeling 
tool, albeit with a significant loss of interpret-
ability. Original neural network approaches, 
although revolutionary, fell out of favor in the 
AI community due to their simplistic archi-
tectures that limited their learning capabili-
ties. New developments in massively parallel 
computing infrastructures using GPUs have 
unlocked this limitation allowing more com-
plex network designs (deep networks) with 
multiple stacked layers that interconnect be-
tween each other to render models with mil-
lions of parameters that can be fit in a reason-
able amount of time. Advances related to the 
optimization of the networks and the avoid-
ance of overfitting to the data that prevents 
the generalization of the results to external 
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datasets are also responsible of the renewed 
interest in applying neural networks.

Convolutional neural networks (CNNs) is a 
type of deep learning method that can define 
relations in complex multidimensional data-
sets like images9. These networks drew their 
inspiration in the human visual system ar-
chitecture that integrates the activations from 
photonic stimuli across multiple layers (V1, 
V2, and V3) with a kernel of neurons that slide 
across each dimension of the data10 (Fig. 1).

APPLICATION OF AI IN COPD

Empowering pulmonary function 
testing

Pulmonary function testing (PFTs) has been 
at the forefront of the clinical diagnosis and 
management of COPD patients. The assess-
ment and interpretation of these tests follow 
international guidelines11 to discern the dif-
ferent patterns. Despite the multiple decades 
of experience with PFT, the recognition of var-
ious disease patterns in PFTs is variable12. In 
this study, 120 pulmonologists evaluated 50 cas-
es with various pulmonary diagnoses to iden-
tify PFT patterns (obstructive, restrictive, mixed 
and normal). Their interpretation was com-
pared to a machine learning technique based 
on a decision tree. The decision tree used func-
tional parameters and basic patient character-
istics as inputs and was trained with data from 
1,430 subjects13. The accuracy of the interpre-
tation of pulmonary pattern among specialists 
was 74.4%, with an interrater variability of kap-
pa = 0.67 reflecting the difficulty of this clin-
ical task. The automated method had a 100% 
and 82% accuracy in PFT pattern identification 

and its corresponding diagnosis. These im-
pressive results suggest the role that AI can 
play as a decision support tool within the 
clinical workflow. Despite the outstanding re-
sults, the method was tested in a single cen-
ter, and large-scale prospective studies are 
needed to support the evidence that machine 
learning can outperform experts.

Beyond support to clinical interpretation, one 
of the most exciting aspects of AI is the abil-
ity to extract opportunistic relations in the 
data beyond the primary diagnostic intend-
ed use. Flow-volume loops provide a unique 
signature to discern different structural in-
formation based on the intimate relationship 
between structure and function14. Bodduluri 
and colleagues15 explored this question and 
proposed a one-dimensional fully convolu-
tional neural network (CNN) to identify CT-de-
rived COPD phenotypes (emphysema predom-
inant, airway predominant and mixed) as 
a multiclass classification from flow-volume 
curves. The network was trained and tested 
using 8,980 smokers from the COPDGene co-
hort with and without COPD. 80% of the data 
was used from training, and 20% was held 
out to validate the performance. The network 
system provided better discrimination be-
tween emphysema and small airway pheno-
types than FEV1% predicted (FEV1pp) and 
FEV1/forced vital capacity (FVC) (area under 
the curve [AUC] 0.91 versus 0.80). However, the 
neural network only showed incremental dis-
crimination performance to detect a mixed 
emphysema-airway phenotype. These initial 
studies indicate that deep learning approach-
es can establish new relations between phys-
iological and structural phenotypes of COPD 
to provide novel insight to develop new diag-
nostic criteria of COPD.
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Unraveling lung structure

Thoracic CT imaging is the primary diagnostic 
tool to investigate the pathological determi-
nants of COPD by enabling an in vivo detection 
of underlying disease endophenotypes. Imag-
ing can be the primary driver to provide per-
sonalized management of COPD16. Although 

imaging has been widely used to phenotype 
COPD in research cohorts17,18, uses in clinical 
practice are still limited. The limited use of im-
aging is partially motivated by the lack of 
automated approaches to provide actionable 
information within the variable imaging con-
ditions commonly encountered in the day-to-
day clinical work.

Figure 1. Convolutional neural network representation. Multiple layers of neurons are interconnected to extract feature information from 
the input stimulus. This concept can be applied to digest multidimensional information from chest computed tomography scans or gene 
expression panels to predict a clinical outcome.
LGN: lateral geniculate nucleus.
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The definition of the lung field, lobar com-
partments, fissures, and the broncho-vascular 
tree are essential steps to quantify the pheno-
typic information that CT conveys. AI is trans-
forming and consolidating the upstream set of 
automated operations necessary to resolve the 
diseased lung’s structural components. Rule-
based approaches to segment the lung and 
the lobes are being replaced by more reliable 
and precise deep learning methods based on 
CNN19,20,21. Rule-based methods propelled some 
of the early research applications of CT-based 
phenotyping22,23,24,25,26, however, these approach-
es lack of generalization and tend to under- or 
over-segment regions without well-demarcat-
ed edges.

Convolutional neural networks have enabled 
image interpretation at different scales. In par-
ticular, the use of U-nets, a specialized neural 
network architecture for semantic segmenta-
tion, has provided a new modeling paradigm 
that is consolidating approaches for automat-
ed lung image segmentation and interpreta-
tion. These approaches are trained with large 
databases of annotated or segmented images 
by experts or semi-automated methods. Fig-
ure 2 shows lobar, airway, and vascular struc-
ture variability in two COPD subjects with 
similar degrees of emphysematous destruction 
obtained with an AI feature detector trained 
to detect lung structures20.

Lung anatomical extraction has enabled the 
phenotyping of both emphysema and airway 
wall thickening in COPD27,28. Reliable struc-
tural interpretation is enabling the quantifi-
cation of that lobar-specific emphysema and 
fissure completeness metrics as part of the rou-
tine patient selection planning for endobron-
chial lung volume reduction29. Also, robust 

airway tree reconstruction has facilitated the 
postulation of novel phenotypes of airways 
disease based on tree fractality measurements 
that aim to detect the tree simplification and 
the small airway destruction that is charac-
teristic of the early onset of the disease30,31. 
An airway fractality index computed from air-
way tree CT reconstructions was positively 
associated with FEV1, FEV1/FVC as well as 
exercise capacity, quality of life and 5-year 
decline in FEV1 in subjects from COPDGene. 
Subjects with the unique phenotype of low 
fractality (tree simplification) and peribronchi-
al emphysema had a higher mortality risk that 
those that did not present tree simplification 
but still have emphysema32. These findings 
suggest the implications of advanced pheno-
typing beyond traditional wall thickness mea-
surements and how AI is critical to its trans-
lation.

Parenchymal injury

Parenchymal injury and its destruction due to 
repeated and unregulated inflammatory re-
sponse to noxious particles is one of the prima-
ry mechanisms for the development of COPD33.

Emphysema subtyping

Quantification of emphysema on CT is prob-
ably today the most employed and reliable 
image-based biomarker16. But the nature of 
the destruction at the secondary lobule fol-
lows different microscopic patterns that can 
define distinct phenotypes34. Emphysema is 
classified into three major histopathological 
patterns35,36. Centrilobular emphysema (CLE) 
is the result of dilatation and destruction of 
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the respiratory bronchioles; panlobular em-
physema (PLE) results from more uniform 
damage of all of the acini within the second-
ary lobule, and paraseptal emphysema (PSE) 
is the localized destruction in the subpleural 
region. Their radiographic appearance is dis-
tinctive, and their functional characteristics 
are unique34,37, suggesting that they are not 
the results of identical pathobiological mech-
anisms. Visual classification of emphysema 
patterns as defined by the Fleischer classifica-
tion system has been an independent predic-
tor of mortality after adjusting for the severity 
of emphysema38, suggesting the importance of 
emphysema subtyping as a prognostic tool.

Machine learning has been employed to clas-
sify emphysema radiographic patterns, exploit-
ing unique densitometry and textural charac-
teristics of the tissue density at a local level39-41. 
A general observation has been that the local 
distribution of CT intensities in the secondary 
lobule can be a distinctive enough feature40. 
The local histogram technique has been shown 
to provide differential, and incremental asso-
ciations between physiological and functional 
metrics of disease as emphysema patterns evolve 
from mild-to-moderate/severe centrilobular and 
panlobular42. Figure  3 shows an example of 
emphysema subtyping using the local histo-
gram technique. Differences in emphysema 

Figure 2. Coronal computed tomography (CT) view, lobar, fissures (blue overlay), vascular and airway fissure morphology in two COPD 
subjects with similar levels of emphysema score (LAA-950% = 15%) and hyperinflation (FRC ~6.4 liters) from the COPDGene study. (Top) Male, 
BMI = 31.99, GOLD 3, FEV1pp = 34.9, TLC = 7.5 liters, FRC = 6.44 liters. (Bottom) Male, BMI = 20.01, GOLD 4, FEV1pp = 15.6, TLC = 7.8 liters, 
FRC = 6.33 liters. The lung morphology was extracted using automated AI image analysis methods. Differences in fissure integrity are 
noticeable in the right oblique fissure. AI enables quantification of lung morphology destruction that can be used to personalized treatment.
AI: artificial intelligence; BMI: body mass index; COPD: chronic obstructive pulmonary disease; FEV1: forced expiratory volume in one 
second; FRC: functional residual capacity; GOLD: Global Initiative for Chronic Obstructive Lung Disease;  LAA: Low Attenuation Area; 
TLC: total lung capacity.
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patterns suggest potential different underlying 
endotypes with variable courses of disease. Of 
note, Castaldi and colleagues42 also showed that 
mild centrilobular disease patterns in smokers 
without COPD were associated with reduced 
FEV1 and worse functional status. This func-
tional implication of early parenchymal inju-
ry detected by automated methods can help to 
better understand parenchymal changes in ear-
ly COPD before the damages become deleteri-
ous and irreversible. Genome-wide association 
analysis on the local histogram subtypes iden-
tified novel loci for moderate and severe centri-
lobular and panlobular emphysema with en-
hancer regions of pulmonary fibroblast showing 
the stronger enrichment43. Recently, the same 
group was able to link further the functional 
role of emphysema subtype detected loci, in 
particular, a locus near genes in the transform-
ing growth factor-beta (TGF-beta) family that 

regulates the expression of fibroblast in lung 
cells44. This mechanistic discovery empow-
ered by machine learning subtyping of emphy-
sema highlights the advantages of using ma-
chine learning tools to further understand the 
genetic and molecular basis of the COPD.

Feature-driven subtyping methods, as described 
above, have been recently augmented by deep 
learning approaches based on convolutional 
neural networks that have shown an increased 
performance in quantifying emphysema cen-
trilobular45 and paraseptal46 patterns. Hum-
phries and colleagues47 also showed that deep 
learning could emulate the visual scoring of 
emphysema patterns, not only replicating re-
sults but also providing better classification 
than visual scores in terms of mortality dif-
ferentiation across groups. The increased as-
sociation with mortality can be explained by 

Figure 3. Emphysema subtyping recognition in two COPD using the local histogram approach in two subjects with similar global 
emphysema scores (LAA-950% ∼10%). (A) GOLD 1, FEV1/FVC = 0.66 FEV1pp = 94.6%. (B) GOLD 0, FEV1/FVC = 0.73, FEV1pp = 95%. 
Emphysema subtyping reveals potential different endotypes despite having a similar emphysema score.
CLE: Congenital lobar emphysema; COPD: chronic obstructive pulmonary disease; FEV1: forced expiratory volume in one second;  
FVC: forced vital capacity; GOLD: Global Initiative for Chronic Obstructive Lung Disease; LAA: Low Attenuation Area.
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the increased reliability and consistency of AI 
systems despite being trained with human la-
bels that are subjective and imperfect. The clas-
sification performance beyond human exper-
tise to tackle a recognition task is at the core 
of the transformation that AI is delivering.

Discovering Emphysema Subtypes

Supervised emphysema subtyping classifica-
tion rests upon the premise that distinct and 
well-known characterize subtypes exist. Al-
though there are very compelling reasons to 
believe so, one exciting application of machine 
learning approaches revolves around discov-
ering new patterns hidden in complex data. 
Yang and colleagues48 explored the hypothesis 
of applying texture learning to define new em-
physema-specific lung texture patterns (sLTPs) 
that could be related to yet undefined emphy-
sema subtypes with unique clinical charac-
teristics. Advanced clustering of emphysem-
atous region textons in the MESA COPD cohort49 
was used to discerned 12 distinct sLTPs. One 
interesting aspect of this approach is that in-
tegrated spatial information as regional dis-
tribution of emphysema has been recognized 
as an important phenotype50. Almost all the 
sLTPs showed reasonable associations with 
dyspnea and exercise capacity, but more work 
is needed to better understand the patholog-
ical meaning. Similarly, Binder51 proposed a 
generative latent Bayesian modeling to define 
six distinct data-driven subtypes. One of the 
challenges of data-driven discovery approach-
es is the need to strike a trade-off between 
revealing very specific, but irrelevant, pat-
terns while preserving invariant and consistent 
characteristics across the general population 
to ensure that capture meaningful biological 

traits. Striking this balance requires rigorous 
modeling with large databases where data is 
carefully aggregated and normalized.

Heart-lung interaction

The vascular and cardiac implications of smok-
ing have been well described52,53. Endotheli-
al dysfunction and arterial remodeling have 
been reported in both patients with mild-to-
severe COPD as well as smokers with normal 
lung function54. The pulmonary vascular im-
plications of COPD are not well understood, 
but they can provide an alternative mechanis-
tic view of the development of COPD. Im-
age-based phenotyping of the small vessels 
has shown to be associated with the decline 
of lung function, reduced exercise capacity, 
and worse quality of life55. The exploration 
of vascular injury is being propelled by new 
methods to classify and quantify pulmonary 
vessels based on AI. Arterial and venous 
stratification is key to understand the pre-cap-
illary and post-capillary effects of vascular 
remodeling in COPD as seen in figure 4. 
Arterial and venous separation of the pul-
monary vessels have been challenging and 
initial attempts were based on graph match-
ing and partitioning techniques56,57. Nardelli 
et al.58 proposed a CNN to compute an “arte-
rialness” probability for each vessel location 
based on cropped image sections of a vessel. 
Those probabilities were used to further di-
vide the vascular tree in a connected arterial 
and venous size. Although the technique was 
trained with a limited number of subjects, the 
validation showed that the sensitivity and spec-
ificity in classifying arteries and veins are com-
parable despite the emphysema level in COPD 
subjects.
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The definition of vascular phenotypes in COPD 
that can be potentially sensible to remodeling 
relies on an accurate estimation of the vessel 

size, particularly in small vessels. This is tech-
nically challenging as the CT scanner’s res-
olution compromises the ability to resolve 

Figure 4. Vascular representation in a smoker control without COPD (A) and a COPD subject with pulmonary hypertension (B) showing 
arterial (blue shades) and venous (orange shade) phases color-coded by vessel size. Deep learning techniques are enabling the 
phenotyping of complex tree structures like the vasculature with unprecedented resolution. Remodeling of small vessels can be 
quantified by means of the blood volume distribution as a function of vessel cross-sectional area (C and D). Arterial (C) and venous (D) 
remodeling reflected as vascular pruning with volume loss are observed in COPD. Other quantifiable traits like increased tortuosity can 
also be observed in the vascular tree architecture of the case with PH.
COPD: chronic obstructive pulmonary disease; PH: pulmonary hypertension.
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small structures. Similar resolution issues are 
encountered in the quantification of small air-
ways that have limited the utilization of wall 
thickening as a reliable phenotype. The de-
velopment of new methods is further compli-
cated by the lack of ground truth as histology 
samples with corresponding imaging are chal-
lenging to obtain. Advanced deep learning 
techniques that leverage generative adversar-
ial networks59 to synthesize real looking CT 
scans of airway and vessel with known char-
acteristics have been employed to train accu-
rate regressors of vessel and airway morpho-
metric characteristics60. This approach has been 
shown to provide accurate airway and vessel 
metrics while preserving high precision to 
variations in imaging protocol (Fig. 4). This 
new kind of techniques can enable the explo-
ration of small structural changes to define 
more sensitive phenotypes of vascular and 
airway remodeling. This further demonstrates 
that AI-driven in silico models of lung pathol-
ogy could provide a new paradigm to define 
endophenotypes under control conditions. This 
is probably one of the most exciting and nov-
el areas of AI that could emerge in the near 
future.

One recent application of these advanced tech-
niques for pulmonary vascular subtyping has 
been in the understanding of the complex lung-
heart interaction in COPD. Epicardial assess-
ment on CT is not optimal, but computation-
al imaging techniques have shown to provide 
a reasonable correlation with cardiac magnet-
ic resonance imaging (MRI)-derived volume 
metrics61. Cardiac dysfunction is common in 
COPD and better understanding of lung deter-
minants is necessary. Washko and colleagues62 
explored the determinants of right ventricu-
lar (RV) remodeling using AI-driven tools for 

vascular and cardiac assessment on CT. Al-
though COPD subjects showed a decreased 
RV volume as disease advances in severity, RV 
enlargement was associated to higher mortal-
ity. However, the effect was modified by ar-
terial small vessel remodeling, death risk was 
63% higher in patients with RV enlargement 
and arterial pruning. The investigators also 
explored the effects on left ventricular (LV) 
volume63. LV volumes were also reduced as 
COPD progresses. Emphysema, venous vas-
cular pruning and pectoralis muscle wasting 
was directly associated to this reduction. How-
ever, smaller left ventricles were associated 
with better outcomes and lower mortality rates. 
Competing effects in ventricular enlargement 
due to tobacco smoke suggest that a well-de-
fined cardio-vascular phenotype may exist 
in COPD.

Diagnosis and outcome prediction

Probably one of the most direct uses of AI in 
healthcare is the ability to define new diagnos-
tic and prognostic models based on multidi-
mensional clinical data without a minimal set 
of “a-priori” hypothesis. AI relevance in health-
care has exponentially increased after practical 
demonstrations on large datasets of how deep 
learning could help diagnose diabetic retinop-
athy and melanoma from diagnostic images3,4.

Gonzalez et al.64 used a three-layer CNN on 
chest CTs from the COPDGene and Evalua-
tion of COPD Longitudinally to Identify Pre-
dictive Surrogate Endpoints (ECLIPSE) cohorts 
to determine whether this methodology could 
detect and stage COPD as well as predict acute 
respiratory events and mortality among smok-
ers (Fig. 5)64. The training was performed in 
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7,983 COPDGene subjects, and testing and repli-
cation were conducted in 1,000 and 1,672 COPD-
Gene and ECLIPSE participants, respectively. 
Using a montage of four canonical CT slices at 
different anatomical levels, the authors showed 
that the CNN can predict COPD GOLD status 
(74.0% one-class-off accuracy), mortality (C-index 
= 0.72) and acute exacerbations (C-index = 0.61). 
These results hold in the replication cohort, 
although there was a reduction in performance 
characteristics suggesting the complexities in 
generalizing the results across cohorts due to 
imaging and population differences. This per-
formance, although only slightly better than 
known indexes like Body-mass index, airflow 
Obstruction, Dyspnea, and Exercise (BODE) 
and other diagnostic models based on known 
image phenotypes, highlights the power of 
CNNs in extracting meaningful features from 

CT images without prescribing potential factors 
involved in the prediction. The ability to op-
erate with minimal hypotheses around a pre-
diction task defines the pragmatism of cur-
rent AI approaches. Recent work by Tang and 
colleagues further shows that residual neu-
ral networks can effectively diagnose COPD 
(AUC = 0.88) using data from the PanCAN 
cohort with stable replication results in 
ECLIPSE based on a subset of slices84. In ad-
dition to that, advanced machine learning 
using random survival models was used 
to exploit imaging and clinical phenotypes to 
predict mortality in COPD and outperform-
ing the BODE index85. Although these results 
are fascinating, they are somehow of limited 
impact in understanding disease pathogene-
sis due to the lack of introspection into the 
rules that the network finds. Further work 

Figure 5. Convolutional neural network (CNN) to diagnose and prognosticate COPD outcomes. The input of the CNN is a composite image 
of four canonical views of the computed tomography scan: an axial slice at the level of the mitral valve, a coronal slice taken at the level of the 
ascending aorta, and two sagittal slices at the level of the right and left hila. The image is analyzed with a CNN consisting of three convolutional 
layers (Conv) followed by max-pooling operations, each reducing the image size fourfold in each direction. At the end of the convolutional layers 
are two fully connected networks, the first one of 1,024 neurons and the second one of variable size depending on the problem at hand: 
classification, multiclass classification, or regression (reproduced and modified from González Serrano G, et al.64 with permission).
ARD: acute respiratory disease; COPD: chronic obstructive pulmonary disease; CT: computed tomography.
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is necessary to understand better how AI op-
erates.

Machine learning approaches can also exploit 
the richness of gene expression data to assist 
in COPD diagnostic and prognostic tasks. In 
recent work, a random forest was used to clas-
sify airway transcriptomic data from 15 pre-se-
lected candidate genes to define a COPD risk 
score65. Although the ability to discriminate 
COPD subjects was very limited, active re-
search in exploiting omics data with machine 
learning may offer new insights about disease 
pathogenesis.

Finally, acute exacerbations are one of the pri-
mary drivers in COPD healthcare utilization. 
The development of prognostic models is an 
active area of research where different clinical 
parameters and biomarker are being integrat-
ed66. Initial attempts using Deep Belief Net-
works and clinical factors have shown an accu-
racy of  92%, which is superior to prior attempts 
to predict exacerbations using support vector 
machine classifiers67. These kinds of approach-
es could augment and support more standard 
models that have been recently proposed from 
pooled clinical trials68.

COPD progression and trajectory 
discovery

A progressive decline of lung function char-
acterizes the natural history of COPD. How-
ever, the traditional view of a continuous 
lung decline has been challenged by recent 
works that highlighted early life effects con-
tributing to COPD development69-71. Ma-
chine learning tools have been used to shed 
light on the patterns of decline in functional 

progression and endotype variability. A Bayes-
ian mixture model approach was able to iden-
tify four trajectories of lung function decline 
in a data-driven manner using subjects from 
the Normative Aging Study and COPDGene72. 
These trajectories had unique genetic contri-
butions suggesting biologically plausible paths 
of disease evolution. Alternatively, Young et 
al. 73 used another machine-learning tool called 
“Subtype and Stage Inference” (SuStaIn) to 
identify two trajectories of disease progres-
sion in COPD, one where small airway dis-
ease and emphysema progress to involvement 
of larger airway disease, and a second where 
larger airway disease is followed by emphy-
sema and small airway disease. These find-
ings provide evidence of new paths of COPD 
progression that warrant further investigation. 

Several other studies have provided evidence 
for machine-learning driven COPD subtypes 
that have consolidated the understanding of 
COPD as both discrete and continuum pro-
cesses with unique biological characteris-
tics74,75. These examples show how data-driv-
en approaches can be used to postulate new 
hypotheses related to the natural history of 
COPD.

FUTURE APPLICATION OF AI

It is clear that AI continues to evolve at a fast 
pace as greater and greater interest has been 
created around its applications, and public 
and private initiatives are rapidly emerging to 
catalyze this field. The COPD community can 
benefit from this frenetic activity as novel ap-
proaches to redefine disease from rich data-
sets are proposed. Better phenotypes are es-
sential to grasp disease heterogeneity. Mostly 
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empowered by imaging, COPD phenotypes 
continued to be investigated and proposed, 
however its translation to clinical practice is 
limited by the need of additional testing or 
complexity in their extraction. AI approaches 
that could regress or predict those phenotypes 
from available clinical data or simpler modal-
ities, like chest X-Rays, could transform COPD 
management in the clinic76.

AI can also be used to capture disease process-
es that were recognized but could not be esti-
mated. For example, airway cartilage loss has 
been described in COPD since the late sixties; 
however, there is no specific metric to charac-
terize this process that can modify how airway 
obstruction is understood. Preliminary studies 
based on generative deep learning techniques 
have shown the ability to quantify airway car-
tilage77. Results in this direction are auspicious 
and raise the field to a new level in terms of 
the quality of the question that can be explored 
and, potentially, answered.

One of the main aspects of AI is its ability 
to define undescribed relations between data 
points. Connecting the imaging phenotype with 
genetic and molecular features in a hypothe-
sis-free way can enable the exploration of nov-
el endophenotypes that could lead to exploring 
the disease in new directions that can be hard 
to elucidate with our current understanding 
of the disease2. Although these venues are high-
ly speculative, they hold much promise as the 
integration of information has been an effective 
way to improve the understanding of diseases75. 
The same way the advent of imaging changed 
how many diseases were approached from the 
research end to the clinical side, AI offers a new 
paradigm for data integration in COPD with 
potential ever lasting effects.

AI LIMITATIONS AND CHALLENGES

Despite all the compelling preliminary evidence 
that could advocate for a more extensive AI role 
in medicine and COPD in particular, several 
challenges remain that need to be carefully 
evaluated and addressed. AI is essentially a da-
ta-driven approach. Models are derived by train-
ing with specific samples of a population. How 
well those models generalized to other popu-
lations or disease stages with slightly different 
endotypes is unknown. Careful replication stud-
ies and reevaluation of the model are needed 
to define the model’s true performance. The 
need for the replication of findings is common 
to any discovery approach like genome-wide 
association studies. Lessons from those fields 
could be extracted to avoid missteps78. 

Model explainability and interpretation are 
major concerns that could hamper the adop-
tion and assimilation of AI in COPD. Many 
AI approaches, particularly those based on 
deep neural networks, are often considered 
“back-boxes”. Although that term is not com-
pletely accurate as the model parameters are 
available and can be inspected, the reality is 
that those parameters are hard to explain, and 
it is difficult to translate their meaning into 
general principles and rules that can be under-
stood by humans. The ability to draw a line 
between the inference that the network de-
rives from the data and understandable gov-
erning principles is an area of active research 
in the AI community that needs to mature79.

Another important issue related to the appli-
cation of AI in COPD is the potential for biases 
and their implications in terms of equity use 
of AI80,81. Biases and disparity in COPD diag-
nosis and treatment may be translated into AI 
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systems trained with clinical data in which 
those underlying biases exist. Artificial intel-
ligence might be more susceptible to those 
biases as it might assimilate them as key dis-
tinctive features to derive a decision. Under-
standing the specific performance character-
istics and new methodological approaches to 
avoid disparities by recognizing differences 
between data domains or populations82 are 
fundamental. Those new approaches will 
need to be adopted and iteratively revised 
and refined.

Finally, the intrinsic data-driven nature of AI 
approaches requires careful consideration of 
data sharing infrastructures and patient pri-
vacy. AI approaches thrives on large streams 
of data that sometimes surpass the limits of 
single institutions or a study. Infrastructures 
that preserve data integrity and privacy need 
to be created to exploit pan-institutional data-
sets that can maximize the potential of deep 
learning. Federated solutions that are being 
proposed to develop models in a de-central-
ized fashion will be necessary components of 
the AI lifecycle in the near future83.

CONCLUSIONS

Artificial intelligence is an emerging field 
that is transforming how clinical and imag-
ing data can be consumed to explore deter-
minants of complex diseases like COPD. Ma-
chine learning models that link imaging, 
functional, biomarkers, and multi-omics data 
can advance our understanding of disease 
subtypes and trajectories beyond our cur-
rent limited phenotypic understanding of the 
disease. The translation of the models that 
can be obtained with AI to clinical practice 

requires careful consideration and extensive 
validation.
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