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Artificial Intelligence in COPD:
New Venues to Study a Complex Disease
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ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous disease
that can benefit from novel approaches to understanding its evolution and divergent tra-
jectories. Artificial intelligence (AI) has revolutionized how we can use clinical, imaging,
and molecular data to understand and model complex systems. Al has shown impressive
results in areas related to automated clinical decision making, radiological interpretation
and prognostication. The unique nature of COPD and the accessibility to well-phenotyped
populations result in an ideal scenario for Al development. This review provides an intro-
duction to Al and deep learning and presents some recent successes in applying Al in
COPD. Finally, we will discuss some of the opportunities, challenges, and limitations for
Al applications in the context of COPD. &N Rev. 2020;6(2):144-60)
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INTRODUCTION

Chronic obstructive pulmonary fisease (COPD)
is a complex pathological condition character-
ized by an admixture of small airway inflam-
mation, obliteration, and parenchymal injury
leading to its destruction. Those processes are
complicated by an aberrant inflammatory re-
sponse that has spill-over effects to other sys-
tems leading to a complex comorbidities rela-
tion!. Although COPD is clinically characterized
by expiratory airflow obstruction, the com-
plexity of the different endotypes that conform
the disease defines the heterogeneity in symp-
toms, therapeutic responses and outcomes?.
This marked heterogeneity makes COPD a
syndrome more than a single condition that
requires a multidisciplinary approach to un-
derstand the basis of the disease and divergent
trajectories to discern the different endophe-
notypes that could lead to more homogenous
groups of patients exhibiting common mech-
anisms.

Artificial intelligence (AI) has revolutionized
how we can use clinical, imaging, and molec-
ular data to understand and model complex
systems. This has led to an explosion of ap-
plications across multiple disciplines, includ-
ing healthcare. Although applied Al still is an
emerging field in many areas, it has shown
exciting and impactful results in the diagnosis
of different conditions using raw data sources
like diagnostic images**. COPD has not been
“Immune” to this trend, and the research com-
munity has embraced Al as a novel modeling
paradigm to harness COPD heterogeneity. This
review focuses on the emerging Al applica-
tions in COPD that enable new venues for its
characterization, diagnostication, and prog-
nostication. A brief initial introduction to Al

and fundaments of deep neural networks will
be provided as the prelude to a review of
emerging applications of AL

What is Al and why now?

Artificial intelligence dates back to the mid-
'50s and the beginning of the digitalization of
the information. It refers to a wide range of
techniques aimed at mimicking and enhanc-
ing some aspects of human cognitive capabil-
ities like vision or speech recognition. Much
of the clinical data that we handle in digital
form is amenable to be exploited by modeling
techniques to determine relations between in-
puts and an outcome or discover the internal
structure of the data without explicit knowl-
edge of those relations. The power of Al to
uncover new relationships in complex data-
sets has driven the high interest in healthcare
and medical science. The power of Al is bet-
ter realized when applied to multi-contextu-
al/multi-dimensional information: electron-
ic medical records, laboratory and functional
testing, imaging, and multi-omics data. With-
in those complex data scenarios, Al has shown
a remarkable capacity to deliver unprecedent-
ed capabilities to recognize trends that can be
translated into complex tasks like a diagnosis
or derived new knowledge from the discov-
ery relations.

Although the theoretical bases for Al meth-
ods have been established during the last de-
cades, Al applications have exploded over the
previous five years, driven by multiple fac-
tors. First, the maturity of the approaches that
can exploit non-linear relation in the data has
been vital. The most significant example is
the resurgence of deep neural networks, a
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type of machine learning based on a compu-
tation model inspired in the neural brain ar-
chitecture with millions of interconnected
computational units. Second, advances in op-
timization and regularization techniques have
made tractable to fit models with a large num-
ber of parameters to a limited set of training
data points. Third, the consolidation of meth-
ods in well-maintained open-source libraries
has empowered the use of Al techniques to a
broader community, including non-experts in
the field with multidisciplinary skills. Finally,
specialized computing architectures based on
Graphics Processing Units (GPUs) have deliv-
ered the necessary computing power to train
advanced models within reasonable amounts
of time.

Deep neural networks

Machine learning is the subfield of Al de-
voted to the development of computational
constructs to capture data relations that can
be used to make autonomous decisions. Ma-
chine learning covers a wide range of tech-
niques from Bayesian methods to decision
trees techniques. Deep learning, a type of
machine learning, is revolutionizing domains
from computer vision and image understand-
ing to speech recognition>¢. Deep neural net-
works are one of the main techniques behind
the explosion of Al One of the most notable
applications has been the emergence of au-
tonomous driving solutions built on top of
this new breed of approaches. Deep learning
allows an algorithm to “program” itself by
learning the underlying features that are re-
quired for the task at hand, unlike conven-
tional methods in which a model is learned
on pre-design features. The predecessors of

these new approaches were neural networks
inspired by the computational construct of a
biological neural system’. The neuron acts as
a generalized linear model regressor. Com-
plex modeling beyond linear regression is
achieved by connecting multiple neural lay-
ers effectively creating a hierarchical model.
The most interesting mathematical property
of neural networks is that they can approx-
imate any continuous function, known as
the universal approximation theorem?®. The
implications of this theorem were profound
as it creates the theoretical basis to design a
system that can map a complex input (a chest
computerized tomography [CT] image or an
RNA expression panel, for example) to a con-
tinuous target (for example, a functional mea-
surement like forced expiratory flow in one
second [FEV,] or a probability of diagnosis)
in a non-linear fashion. Unlike traditional
biostatistical modeling that is based on linear
relationships between independent variables
and an outcome, neural networks can de-
scribe complex non-linear relations, therefore
providing a powerful and flexible modeling
tool, albeit with a significant loss of interpret-
ability. Original neural network approaches,
although revolutionary, fell out of favor in the
Al community due to their simplistic archi-
tectures that limited their learning capabili-
ties. New developments in massively parallel
computing infrastructures using GPUs have
unlocked this limitation allowing more com-
plex network designs (deep networks) with
multiple stacked layers that interconnect be-
tween each other to render models with mil-
lions of parameters that can be fit in a reason-
able amount of time. Advances related to the
optimization of the networks and the avoid-
ance of overfitting to the data that prevents
the generalization of the results to external
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datasets are also responsible of the renewed and its corresponding diagnosis. These im-
interest in applying neural networks. pressive results suggest the role that Al can
play as a decision support tool within the
Convolutional neural networks (CNNs) is a clinical workflow. Despite the outstanding re-
type of deep learning method that can define sults, the method was tested in a single cen-
relations in complex multidimensional data- ter, and large-scale prospective studies are
sets like images’. These networks drew their needed to support the evidence that machine
inspiration in the human visual system ar- learning can outperform experts.
chitecture that integrates the activations from
photonic stimuli across multiple layers (V1, Beyond support to clinical interpretation, one
V2, and V3) with a kernel of neurons that slide of the most exciting aspects of Al is the abil-
across each dimension of the data'® (Fig. 1). ity to extract opportunistic relations in the

data beyond the primary diagnostic intend-
ed use. Flow-volume loops provide a unique

APPLICATION OF Al IN COPD signature to discern different structural in-

formation based on the intimate relationship
Empowering pulmonary function between structure and function'. Bodduluri
testing and colleagues!® explored this question and

proposed a one-dimensional fully convolu-
Pulmonary function testing (PFTs) has been tional neural network (CNN) to identify CT-de-
at the forefront of the clinical diagnosis and rived COPD phenotypes (emphysema predom-

management of COPD patients. The assess- inant, airway predominant and mixed) as
ment and interpretation of these tests follow a multiclass classification from flow-volume
international guidelines'! to discern the dif- curves. The network was trained and tested
ferent patterns. Despite the multiple decades using 8,980 smokers from the COPDGene co-
of experience with PFT, the recognition of var- hort with and without COPD. 80% of the data
ious disease patterns in PFTs is variable'. In was used from training, and 20% was held
this study, 120 pulmonologists evaluated 50 cas- out to validate the performance. The network
es with various pulmonary diagnoses to iden- system provided better discrimination be-
tify PFT patterns (obstructive, restrictive, mixed tween emphysema and small airway pheno-
and normal). Their interpretation was com- types than FEV1% predicted (FEV,pp) and
pared to a machine learning technique based FEV, /forced vital capacity (FVC) (area under
on a decision tree. The decision tree used func- the curve [AUC] 091 versus 0.80). However, the
tional parameters and basic patient character- neural network only showed incremental dis-
istics as inputs and was trained with data from crimination performance to detect a mixed
1,430 subjects'®. The accuracy of the interpre- emphysema-airway phenotype. These initial
tation of pulmonary pattern among specialists studies indicate that deep learning approach-
was 74.4%, with an interrater variability of kap- es can establish new relations between phys-

pa = 0.67 reflecting the difficulty of this clin- iological and structural phenotypes of COPD
ical task. The automated method had a 100% to provide novel insight to develop new diag-
and 82% accuracy in PFT pattern identification nostic criteria of COPD.
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Ficure 1. Convolutional neural network representation. Multiple layers of neurons are interconnected to extract feature information from
the input stimulus. This concept can be applied to digest multidimensional information from chest computed tomography scans or gene
expression panels to predict a clinical outcome.

LGN: lateral geniculate nucleus.

Unraveling lung structure

Thoracic CT imaging is the primary diagnostic
tool to investigate the pathological determi-
nants of COPD by enabling an in vivo detection
of underlying disease endophenotypes. Imag-
ing can be the primary driver to provide per-
sonalized management of COPD'*. Although

imaging has been widely used to phenotype
COPD in research cohorts”!8, uses in clinical
practice are still limited. The limited use of im-
aging is partially motivated by the lack of
automated approaches to provide actionable
information within the variable imaging con-
ditions commonly encountered in the day-to-
day clinical work.
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The definition of the lung field, lobar com-
partments, fissures, and the broncho-vascular
tree are essential steps to quantify the pheno-
typic information that CT conveys. Al is trans-
forming and consolidating the upstream set of
automated operations necessary to resolve the
diseased lung’s structural components. Rule-
based approaches to segment the lung and
the lobes are being replaced by more reliable
and precise deep learning methods based on
CNNP2021 Rule-based methods propelled some
of the early research applications of CT-based
phenotyping?>?>*2>26, however, these approach-
es lack of generalization and tend to under- or
over-segment regions without well-demarcat-
ed edges.

Convolutional neural networks have enabled
image interpretation at different scales. In par-
ticular, the use of U-nets, a specialized neural
network architecture for semantic segmenta-
tion, has provided a new modeling paradigm
that is consolidating approaches for automat-
ed lung image segmentation and interpreta-
tion. These approaches are trained with large
databases of annotated or segmented images
by experts or semi-automated methods. Fig-
ure 2 shows lobar, airway, and vascular struc-
ture variability in two COPD subjects with
similar degrees of emphysematous destruction
obtained with an Al feature detector trained
to detect lung structures®.

Lung anatomical extraction has enabled the
phenotyping of both emphysema and airway
wall thickening in COPD?*28. Reliable struc-
tural interpretation is enabling the quantifi-
cation of that lobar-specific emphysema and
fissure completeness metrics as part of the rou-
tine patient selection planning for endobron-
chial lung volume reduction®. Also, robust

airway tree reconstruction has facilitated the
postulation of novel phenotypes of airways
disease based on tree fractality measurements
that aim to detect the tree simplification and
the small airway destruction that is charac-
teristic of the early onset of the disease®3!.
An airway fractality index computed from air-
way tree CT reconstructions was positively
associated with FEV,, FEV,/FVC as well as
exercise capacity, quality of life and 5-year
decline in FEV| in subjects from COPDGene.
Subjects with the unique phenotype of low
fractality (tree simplification) and peribronchi-
al emphysema had a higher mortality risk that
those that did not present tree simplification
but still have emphysema®. These findings
suggest the implications of advanced pheno-
typing beyond traditional wall thickness mea-
surements and how Al is critical to its trans-
lation.

Parenchymal injury

Parenchymal injury and its destruction due to
repeated and unregulated inflammatory re-
sponse to noxious particles is one of the prima-
ry mechanisms for the development of COPD®.

EMPHYSEMA SUBTYPING

Quantification of emphysema on CT is prob-
ably today the most employed and reliable
image-based biomarker!®. But the nature of
the destruction at the secondary lobule fol-
lows different microscopic patterns that can
define distinct phenotypes®. Emphysema is
classified into three major histopathological
patterns®?¢. Centrilobular emphysema (CLE)
is the result of dilatation and destruction of
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Ficure 2. Coronal computed tomography (CT) view, lobar, fissures (blue overlay), vascular and airway fissure morphology in two COPD
subjects with similar levels of emphysema score (LAA-950% = 15%) and hyperinflation (FRC ~6.4 liters) from the COPDGene study. (Top) Male,
BMI = 31.99, GOLD 3, FEV,pp = 34.9, TLC = 7.5 liters, FRC = 6.4 liters. (Bottom) Male, BMI = 20.01, GOLD 4, FEV1pp = 15.6, TLC = 7.8 liters,
FRC = 6.33 liters. The lung morphology was extracted using automated Al image analysis methods. Differences in fissure integrity are
noticeable in the right oblique fissure. Al enables quantification of lung morphology destruction that can be used to personalized treatment.
Al: artificial intelligence; BMI: body mass index; COPD: chronic obstructive pulmonary disease; FEV,: forced expiratory volume in one
second; FRC: functional residual capacity; GOLD: Global Initiative for Chronic Obstructive Lung Disease; LAA: Low Attenuation Area;

TLC: total lung capacity.

the respiratory bronchioles; panlobular em-
physema (PLE) results from more uniform
damage of all of the acini within the second-
ary lobule, and paraseptal emphysema (PSE)
is the localized destruction in the subpleural
region. Their radiographic appearance is dis-
tinctive, and their functional characteristics
are unique**¥, suggesting that they are not
the results of identical pathobiological mech-
anisms. Visual classification of emphysema
patterns as defined by the Fleischer classifica-
tion system has been an independent predic-
tor of mortality after adjusting for the severity
of emphysema®, suggesting the importance of
emphysema subtyping as a prognostic tool.

Machine learning has been employed to clas-
sifty emphysema radiographic patterns, exploit-
ing unique densitometry and textural charac-
teristics of the tissue density at a local level®-4.,
A general observation has been that the local
distribution of CT intensities in the secondary
lobule can be a distinctive enough feature®.
The local histogram technique has been shown
to provide differential, and incremental asso-
ciations between physiological and functional
metrics of disease as emphysema patterns evolve
from mild-to-moderate/severe centrilobular and
panlobular*?. Figure 3 shows an example of
emphysema subtyping using the local histo-
gram technique. Differences in emphysema
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Ficure 3. Emphysema subtyping recognition in two COPD using the local histogram approach in two subjects with similar global
emphysema scores (LAA-950% ~10%). (A) GOLD 1, FEV,/FVC = 0.66 FEV,pp = 94.6%. (B) GOLD 0, FEV,/FVC = 0.73, FEV,pp = 95%.
Emphysema subtyping reveals potential different endotypes despite having a similar emphysema score.

CLE: Congenital lobar emphysema; COPD: chronic obstructive pulmonary disease; FEV,: forced expiratory volume in one second;
FVC: forced vital capacity; GOLD: Global Initiative for Chronic Obstructive Lung Disease; LAA: Low Attenuation Area.

patterns suggest potential different underlying
endotypes with variable courses of disease. Of
note, Castaldi and colleagues*? also showed that
mild centrilobular disease patterns in smokers
without COPD were associated with reduced
FEV, and worse functional status. This func-
tional implication of early parenchymal inju-
ry detected by automated methods can help to
better understand parenchymal changes in ear-
ly COPD before the damages become deleteri-
ous and irreversible. Genome-wide association
analysis on the local histogram subtypes iden-
tified novel loci for moderate and severe centri-
lobular and panlobular emphysema with en-
hancer regions of pulmonary fibroblast showing
the stronger enrichment®. Recently, the same
group was able to link further the functional
role of emphysema subtype detected loci, in
particular, a locus near genes in the transform-
ing growth factor-beta (TGF-beta) family that

regulates the expression of fibroblast in lung
cells**. This mechanistic discovery empow-
ered by machine learning subtyping of emphy-
sema highlights the advantages of using ma-
chine learning tools to further understand the
genetic and molecular basis of the COPD.

Feature-driven subtyping methods, as described
above, have been recently augmented by deep
learning approaches based on convolutional
neural networks that have shown an increased
performance in quantifying emphysema cen-
trilobular®® and paraseptal*® patterns. Hum-
phries and colleagues* also showed that deep
learning could emulate the visual scoring of
emphysema patterns, not only replicating re-
sults but also providing better classification
than visual scores in terms of mortality dif-
ferentiation across groups. The increased as-
sociation with mortality can be explained by
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the increased reliability and consistency of Al
systems despite being trained with human la-
bels that are subjective and imperfect. The clas-
sification performance beyond human exper-
tise to tackle a recognition task is at the core
of the transformation that Al is delivering.

DiscoVERING EMPHYSEMA SUBTYPES

Supervised emphysema subtyping classifica-
tion rests upon the premise that distinct and
well-known characterize subtypes exist. Al-
though there are very compelling reasons to
believe so, one exciting application of machine
learning approaches revolves around discov-
ering new patterns hidden in complex data.
Yang and colleagues®® explored the hypothesis
of applying texture learning to define new em-
physema-specific lung texture patterns (sLIPs)
that could be related to yet undefined emphy-
sema subtypes with unique clinical charac-
teristics. Advanced clustering of emphysem-
atous region textons in the MESA COPD cohort
was used to discerned 12 distinct sSLTPs. One
interesting aspect of this approach is that in-
tegrated spatial information as regional dis-
tribution of emphysema has been recognized
as an important phenotype®. Almost all the
sLTPs showed reasonable associations with
dyspnea and exercise capacity, but more work
is needed to better understand the patholog-
ical meaning. Similarly, Binder®! proposed a
generative latent Bayesian modeling to define
six distinct data-driven subtypes. One of the
challenges of data-driven discovery approach-
es is the need to strike a trade-off between
revealing very specific, but irrelevant, pat-
terns while preserving invariant and consistent
characteristics across the general population
to ensure that capture meaningful biological

traits. Striking this balance requires rigorous
modeling with large databases where data is
carefully aggregated and normalized.

Heart-lung interaction

The vascular and cardiac implications of smok-
ing have been well described®**. Endotheli-
al dysfunction and arterial remodeling have
been reported in both patients with mild-to-
severe COPD as well as smokers with normal
lung function®*. The pulmonary vascular im-
plications of COPD are not well understood,
but they can provide an alternative mechanis-
tic view of the development of COPD. Im-
age-based phenotyping of the small vessels
has shown to be associated with the decline
of lung function, reduced exercise capacity,
and worse quality of life®>. The exploration
of vascular injury is being propelled by new
methods to classify and quantify pulmonary
vessels based on Al Arterial and venous
stratification is key to understand the pre-cap-
illary and post-capillary effects of vascular
remodeling in COPD as seen in figure 4.
Arterial and venous separation of the pul-
monary vessels have been challenging and
initial attempts were based on graph match-
ing and partitioning techniques®*>”. Nardelli
et al.”® proposed a CNN to compute an “arte-
rialness” probability for each vessel location
based on cropped image sections of a vessel.
Those probabilities were used to further di-
vide the vascular tree in a connected arterial
and venous size. Although the technique was
trained with a limited number of subjects, the
validation showed that the sensitivity and spec-
ificity in classifying arteries and veins are com-
parable despite the emphysema level in COPD
subjects.
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Ficure 4. Vascular representation in a smoker control without COPD (A) and a COPD subject with pulmonary hypertension (B) showing
arterial (blue shades) and venous (orange shade) phases color-coded by vessel size. Deep learning techniques are enabling the
phenotyping of complex tree structures like the vasculature with unprecedented resolution. Remodeling of small vessels can be
quantified by means of the blood volume distribution as a function of vessel cross-sectional area (C and D). Arterial (C) and venous (D)
remodeling reflected as vascular pruning with volume loss are observed in COPD. Other quantifiable traits like increased tortuosity can
also be observed in the vascular tree architecture of the case with PH.

COPD: chronic obstructive pulmonary disease; PH: pulmonary hypertension.

The definition of vascular phenotypes in COPD size, particularly in small vessels. This is tech-
that can be potentially sensible to remodeling nically challenging as the CT scanner’s res-
relies on an accurate estimation of the vessel olution compromises the ability to resolve
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small structures. Similar resolution issues are
encountered in the quantification of small air-
ways that have limited the utilization of wall
thickening as a reliable phenotype. The de-
velopment of new methods is further compli-
cated by the lack of ground truth as histology
samples with corresponding imaging are chal-
lenging to obtain. Advanced deep learning
techniques that leverage generative adversar-
ial networks™® to synthesize real looking CT
scans of airway and vessel with known char-
acteristics have been employed to train accu-
rate regressors of vessel and airway morpho-
metric characteristics®’. This approach has been
shown to provide accurate airway and vessel
metrics while preserving high precision to
variations in imaging protocol (Fig. 4). This
new kind of techniques can enable the explo-
ration of small structural changes to define
more sensitive phenotypes of vascular and
airway remodeling. This further demonstrates
that Al-driven in silico models of lung pathol-
ogy could provide a new paradigm to define
endophenotypes under control conditions. This
is probably one of the most exciting and nov-
el areas of Al that could emerge in the near
tuture.

One recent application of these advanced tech-
niques for pulmonary vascular subtyping has
been in the understanding of the complex lung-
heart interaction in COPD. Epicardial assess-
ment on CT is not optimal, but computation-
al imaging techniques have shown to provide
a reasonable correlation with cardiac magnet-
ic resonance imaging (MRI)-derived volume
metrics®. Cardiac dysfunction is common in
COPD and better understanding of lung deter-
minants is necessary. Washko and colleagues®
explored the determinants of right ventricu-
lar (RV) remodeling using Al-driven tools for

vascular and cardiac assessment on CT. Al-
though COPD subjects showed a decreased
RV volume as disease advances in severity, RV
enlargement was associated to higher mortal-
ity. However, the effect was modified by ar-
terial small vessel remodeling, death risk was
63% higher in patients with RV enlargement
and arterial pruning. The investigators also
explored the effects on left ventricular (LV)
volume®. LV volumes were also reduced as
COPD progresses. Emphysema, venous vas-
cular pruning and pectoralis muscle wasting
was directly associated to this reduction. How-
ever, smaller left ventricles were associated
with better outcomes and lower mortality rates.
Competing effects in ventricular enlargement
due to tobacco smoke suggest that a well-de-
tfined cardio-vascular phenotype may exist
in COPD.

Diagnosis and outcome prediction

Probably one of the most direct uses of Al in
healthcare is the ability to define new diagnos-
tic and prognostic models based on multidi-
mensional clinical data without a minimal set
of “a-priori” hypothesis. Al relevance in health-
care has exponentially increased after practical
demonstrations on large datasets of how deep
learning could help diagnose diabetic retinop-
athy and melanoma from diagnostic images®*.

Gonzalez et al.®* used a three-layer CNN on
chest CTs from the COPDGene and Evalua-
tion of COPD Longitudinally to Identify Pre-
dictive Surrogate Endpoints (ECLIPSE) cohorts
to determine whether this methodology could
detect and stage COPD as well as predict acute
respiratory events and mortality among smok-
ers (Fig. 5)%. The training was performed in
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Ficure 5. Convolutional neural network (CNN) to diagnose and prognosticate COPD outcomes. The input of the CNN is a composite image
of four canonical views of the computed tomography scan: an axial slice at the level of the mitral valve, a coronal slice taken at the level of the
ascending aorta, and two sagittal slices at the level of the right and left hila. The image is analyzed with a CNN consisting of three convolutional
layers (Conv) followed by max-pooling operations, each reducing the image size fourfold in each direction. At the end of the convolutional layers
are two fully connected networks, the first one of 1,024 neurons and the second one of variable size depending on the problem at hand:
classification, multiclass classification, or regression (reproduced and modified from Gonzélez Serrano G, et al.%* with permission).

ARD: acute respiratory disease; COPD: chronic obstructive pulmonary disease; CT: computed tomography.

7983 COPDGene subjects, and testing and repli-
cation were conducted in 1,000 and 1,672 COPD-
Gene and ECLIPSE participants, respectively.
Using a montage of four canonical CT slices at
different anatomical levels, the authors showed
that the CNN can predict COPD GOLD status
(74.0% one-class-off accuracy), mortality (C-index
= 0.72) and acute exacerbations (C-index = 0.61).
These results hold in the replication cohort,
although there was a reduction in performance
characteristics suggesting the complexities in
generalizing the results across cohorts due to
imaging and population differences. This per-
formance, although only slightly better than
known indexes like Body-mass index, airflow
Obstruction, Dyspnea, and Exercise (BODE)
and other diagnostic models based on known
image phenotypes, highlights the power of
CNN s in extracting meaningful features from

CT images without prescribing potential factors
involved in the prediction. The ability to op-
erate with minimal hypotheses around a pre-
diction task defines the pragmatism of cur-
rent Al approaches. Recent work by Tang and
colleagues further shows that residual neu-
ral networks can effectively diagnose COPD
(AUC = 0.88) using data from the PanCAN
cohort with stable replication results in
ECLIPSE based on a subset of slices®. In ad-
dition to that, advanced machine learning
using random survival models was used
to exploit imaging and clinical phenotypes to
predict mortality in COPD and outperform-
ing the BODE index®. Although these results
are fascinating, they are somehow of limited
impact in understanding disease pathogene-
sis due to the lack of introspection into the
rules that the network finds. Further work
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is necessary to understand better how Al op-
erates.

Machine learning approaches can also exploit
the richness of gene expression data to assist
in COPD diagnostic and prognostic tasks. In
recent work, a random forest was used to clas-
sify airway transcriptomic data from 15 pre-se-
lected candidate genes to define a COPD risk
score®. Although the ability to discriminate
COPD subjects was very limited, active re-
search in exploiting omics data with machine
learning may offer new insights about disease
pathogenesis.

Finally, acute exacerbations are one of the pri-
mary drivers in COPD healthcare utilization.
The development of prognostic models is an
active area of research where different clinical
parameters and biomarker are being integrat-
ed®. Initial attempts using Deep Belief Net-
works and clinical factors have shown an accu-
racy of 92%, which is superior to prior attempts
to predict exacerbations using support vector
machine classifiers®”. These kinds of approach-
es could augment and support more standard
models that have been recently proposed from
pooled clinical trials®®.

COPD progression and trajectory
discovery

A progressive decline of lung function char-
acterizes the natural history of COPD. How-
ever, the traditional view of a continuous
lung decline has been challenged by recent
works that highlighted early life effects con-
tributing to COPD development®7!. Ma-
chine learning tools have been used to shed
light on the patterns of decline in functional

progression and endotype variability. A Bayes-
ian mixture model approach was able to iden-
tify four trajectories of lung function decline
in a data-driven manner using subjects from
the Normative Aging Study and COPDGene”2.
These trajectories had unique genetic contri-
butions suggesting biologically plausible paths
of disease evolution. Alternatively, Young et
al. used another machine-learning tool called
“Subtype and Stage Inference” (SuStaln) to
identify two trajectories of disease progres-
sion in COPD, one where small airway dis-
ease and emphysema progress to involvement
of larger airway disease, and a second where
larger airway disease is followed by emphy-
sema and small airway disease. These find-
ings provide evidence of new paths of COPD
progression that warrant further investigation.

Several other studies have provided evidence
for machine-learning driven COPD subtypes
that have consolidated the understanding of
COPD as both discrete and continuum pro-
cesses with unique biological characteris-
tics™7”>. These examples show how data-driv-
en approaches can be used to postulate new
hypotheses related to the natural history of
COPD.

FUTURE APPLICATION OF Al

It is clear that AI continues to evolve at a fast
pace as greater and greater interest has been
created around its applications, and public
and private initiatives are rapidly emerging to
catalyze this field. The COPD community can
benefit from this frenetic activity as novel ap-
proaches to redefine disease from rich data-
sets are proposed. Better phenotypes are es-
sential to grasp disease heterogeneity. Mostly
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empowered by imaging, COPD phenotypes
continued to be investigated and proposed,
however its translation to clinical practice is
limited by the need of additional testing or
complexity in their extraction. Al approaches
that could regress or predict those phenotypes
from available clinical data or simpler modal-
ities, like chest X-Rays, could transform COPD
management in the clinic’.

Al can also be used to capture disease process-
es that were recognized but could not be esti-
mated. For example, airway cartilage loss has
been described in COPD since the late sixties;
however, there is no specific metric to charac-
terize this process that can modify how airway
obstruction is understood. Preliminary studies
based on generative deep learning techniques
have shown the ability to quantify airway car-
tilage””. Results in this direction are auspicious
and raise the field to a new level in terms of
the quality of the question that can be explored
and, potentially, answered.

One of the main aspects of Al is its ability
to define undescribed relations between data
points. Connecting the imaging phenotype with
genetic and molecular features in a hypothe-
sis-free way can enable the exploration of nov-
el endophenotypes that could lead to exploring
the disease in new directions that can be hard
to elucidate with our current understanding
of the disease?. Although these venues are high-
ly speculative, they hold much promise as the
integration of information has been an effective
way to improve the understanding of diseases”™.
The same way the advent of imaging changed
how many diseases were approached from the
research end to the clinical side, Al offers a new
paradigm for data integration in COPD with
potential ever lasting effects.

Al LIMITATIONS AND CHALLENGES

Despite all the compelling preliminary evidence
that could advocate for a more extensive Al role
in medicine and COPD in particular, several
challenges remain that need to be carefully
evaluated and addressed. Al is essentially a da-
ta-driven approach. Models are derived by train-
ing with specific samples of a population. How
well those models generalized to other popu-
lations or disease stages with slightly different
endotypes is unknown. Careful replication stud-
ies and reevaluation of the model are needed
to define the model’s true performance. The
need for the replication of findings is common
to any discovery approach like genome-wide
association studies. Lessons from those fields
could be extracted to avoid missteps’®.

Model explainability and interpretation are
major concerns that could hamper the adop-
tion and assimilation of Al in COPD. Many
Al approaches, particularly those based on
deep neural networks, are often considered
“back-boxes”. Although that term is not com-
pletely accurate as the model parameters are
available and can be inspected, the reality is
that those parameters are hard to explain, and
it is difficult to translate their meaning into
general principles and rules that can be under-
stood by humans. The ability to draw a line
between the inference that the network de-
rives from the data and understandable gov-
erning principles is an area of active research
in the Al community that needs to mature”.

Another important issue related to the appli-
cation of Al in COPD is the potential for biases
and their implications in terms of equity use
of AI?%8L Biases and disparity in COPD diag-
nosis and treatment may be translated into Al
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systems trained with clinical data in which
those underlying biases exist. Artificial intel-
ligence might be more susceptible to those
biases as it might assimilate them as key dis-
tinctive features to derive a decision. Under-
standing the specific performance character-
istics and new methodological approaches to
avoid disparities by recognizing differences
between data domains or populations® are
fundamental. Those new approaches will
need to be adopted and iteratively revised
and refined.

Finally, the intrinsic data-driven nature of Al
approaches requires careful consideration of
data sharing infrastructures and patient pri-
vacy. Al approaches thrives on large streams
of data that sometimes surpass the limits of
single institutions or a study. Infrastructures
that preserve data integrity and privacy need
to be created to exploit pan-institutional data-
sets that can maximize the potential of deep
learning. Federated solutions that are being
proposed to develop models in a de-central-
ized fashion will be necessary components of
the Al lifecycle in the near future®.

CONCLUSIONS

Artificial intelligence is an emerging field
that is transforming how clinical and imag-
ing data can be consumed to explore deter-
minants of complex diseases like COPD. Ma-
chine learning models that link imaging,
functional, biomarkers, and multi-omics data
can advance our understanding of disease
subtypes and trajectories beyond our cur-
rent limited phenotypic understanding of the
disease. The translation of the models that
can be obtained with Al to clinical practice

requires careful consideration and extensive
validation.
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