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Abstract

Lungs grow and mature in utero and after birth until early adulthood. Normally, lung func-
tion reaches a peak between 20-25 years of age, earlier in females, and after a relatively brief 
plateau, it declines slowly due to physiological lung ageing. There are several genetic and 
environmental factors with the potential to alter this normal lung function trajectory, so it 
is now recognized that in the general population there is indeed a range of them. Further, 
it is also known now that some of these trajectories have important health consequences, 
both for the lungs but also for other organ systems, including premature death. Here we 
provide a brief overview of these new concepts and discuss the potential implications of 
this new framework to understand adult respiratory diseases. (BRN Rev. 2020;6(2):118-27)
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INTRODUCTION

Lung development and growth is extremely 
complex1. It starts in utero and continues after 
birth, during infancy and adolescence until ear-
ly adulthood (Fig. 1), where lung function reach-
es a peak value (earlier in females)2. After a 
relatively brief plateau, lung function declines 
moderately due to physiological lung ageing3. 
This normal lung function trajectory can be al-
tered by several genetic and environmental 
factors. Indeed, it is now well recognized that 
there is a range of them in the general popu-
lation3,4 (Fig. 1). Further, it is also now known 
that some of these trajectories can have import-
ant health consequences, both for the lungs and 
for other organ systems such as the cardiovas-
cular and metabolic ones, including premature 
death5,6 (Fig. 2). Below we briefly review the 
evidence supporting this new paradigm and 
discuss its potential implications for the under-
standing of adult chronic respiratory diseases. 

LUNG FUNCTION TRAJECTORIES

Altered lung growth

Between 4-12% of individuals in the general 
population fail to reach a forced expiratory vol-
ume in one second (FEV1) peak in early adult-
wood within the predicted “normal range” for 
their age and sex5. This can be due to one or 
more genetic risk factors7-9 and/or environ-
mental conditions in utero and after birth4,10, 
including maternal tobacco smoking and un-
der-nourishment, premature birth, intrauter-
ine growth restriction and broncho-pulmo-
nary dysplasia, air pollution exposure, lower 
respiratory tract infections and active smoking 
during adolescence. Childhood “asthma” is also 

often considered a risk factor for low lung func-
tion in early adulthood11 but the diagnosis of 
“asthma” in young children is difficult to estab-
lish objectively and, although the presence of 
“asthma” can conceivably impair lung growth, 
it is also possible that any other process impair-
ing lung growth can cause similar, nonspecific, 
symptoms than those traditionally associated 
to asthma (dyspnoea, cough, wheezing). These 
environmental risk factors interact in a complex 
manner and change with time12 (Fig. 3). Impor-
tantly, many of them are preventable12. Finally, 
it is also important to note that individuals 
who fail to attain a normal peak lung function 
in early adulthood suffer a higher prevalence 
and about a decade earlier incidence of cardi-
ac and metabolic comorbidities, as well as pre-
mature death5. These observations have been 
later reproduced in other cohorts13. 

Accelerated lung function decline

Chronic obstructive pulmonary disease (COPD) 
has been traditionally considered the paradigm 
of an adult respiratory disease characterized by 
an enhanced rate of lung function decline14 due 
to the inflammatory response to tobacco smok-
ing6. Recent research, however, has shown that 
this paradigm is incomplete6 since about 30% of 
COPD patients worldwide are never smokers15, 
exposure to other inhaled particles and gases 
than those of smoking (e.g. biomass, air pollu-
tion) can also lead to COPD in adulthood16, and 
not all patients with COPD exhibit enhanced 
lung function decline17,18. The latter was clearly 
shown in a recent study by Lange, Celli, Agustí 
et al. in three large independent cohorts18. 
Results showed that the rate of lung function 
decline was accelerated in only about half of 
adult COPD patients whereas the other half had 
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evidence of low peak lung function in their 
thirties and developed COPD with a normal 
lung function decline rate18. These observations 
have been confirmed by other subsequent stud-
ies19-22. Further, a recent analysis in the Framing-
ham Offspring Cohort and their direct descen-
dants (Gen III cohort) has provided evidence of 
trans-generational reproducibility of lung func-
tion5 (Fig. 4), albeit it should be noted that this 
transgenerational reproducibility may be due 
to genetic and/or shared environmental factors.

IMPLICATIONS FOR A NEW 
UNDERSTANDING OF ADULT 
CHRONIC RESPIRATORY DISEASES

The realization that several genetic and envi-
ronmental risk factors interact dynamically 

over time in very complex ways (Fig. 3) and 
that, as a result, there is a range of lung function 
trajectories in the general population (Fig. 1), 
some of them with important health conse-
quences, including premature death (Fig.  2), 
raises questions and challenges and, at the 
same time, opens new opportunities for pre-
vention and early intervention of chronic respi-
ratory disease in children and adults23. 

First, the biological mechanisms underlying 
these different lung function trajectories are 
not always well understood. In terms of de-
fective lung growth, the two main, non-mutu-
ally exclusive, mechanisms proposed3 include 
abnormal lung development in utero (since 
about 40% of lung function deficits at 6-7 years 
of age are already present at birth24) and fail-
ure to “catch-up” lung function during infancy 

Figure 1. Schematic representation of several potential lung function trajectories through life (reproduced from Agustí A, et al.6  
with permission). For further explanations, see text.
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Figure 2. Increased prevalence, incidence and mortality in individuals with low lung function in early adulthood (reproduced from  
Agustí A, et al.5 with permission). For further explanations, see text. 
CI: confidence interval; FEV1: forced expiratory volume in one second; HR: hazard ratio.
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and adolescence25 (the term catch-up here re-
fers to the observation that many environ-
mental conditions cause growth impairment 
but, when they resolve, some (not all) children 
regain a normal growth trajectory26,27). On the 
other hand, in terms of enhanced lung function 
decline in adulthood, albeit oxidative stress, 
protease-antiprotease imbalance and an ab-
normal inflammatory response have been tra-
ditionally considered their main underlying 
biological mechanisms28, now we know that 

many other ones also participate, including 
cellular senescence and apoptosis, airway fi-
brosis and remodelling, stem cell exhaustion, 
extracellular matrix alterations, autophagy, au-
toimmunity to neo-epitopes and reductions 
of endogenous anti-ageing molecules6. In es-
sence, it is the interplay between two major 
biologic mechanisms, organ development, main-
tenance and repair (green triangle in figure 5, 
which decreases with age), and cumulative 
tissue injury and ageing (red triangle in figure 5, 

Figure 3. Networks of associations with airflow limitation (yellow node at the center of the network) with different environmental factors 
in different age bins (reproduced from Breyer-Kohansal R, et al.12 with permission).  For further explanations, see text. 
COPD: chronic obstructive pulmonary disease; FEV1: forced expiratory volume in one second; FVC: forced vital capacity; LLN: lower limit 
of normal.
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which increases with age) what determines 
health and life expectancy (top triangle in 
figure 5), including lung function trajectories 
(Fig.  1) and associated comorbidities (Fig. 2). 
Of note, due to gene-environment interactions 
(Fig.  3), the slope of these two main mecha-
nisms (green and red triangles in figure 5) may 
change (for better or worse) in different indi-
viduals (as indicated by the dashed arrows, 
green and red, in figure  5). Understanding 
much better the role and interactions of all these 
putative mechanisms may open new thera-
peutic alternatives to promote lung growth and 
stop lung function decline29. 

Second, it is conceivable that, if for whatever 
genetic and/or environmental factors reviewed 

above the lungs do not develop properly, other 
organ systems may do so too. After all, genes 
are the same in all cells and many environmen-
tal factors (e.g., smoking, pollution, diet, exer-
cise,…) can affect many other organs than the 
lungs. In fact, several genetic variants associat-
ed with lung function are also associated with 
birth weight and height as well as with car-
dio-metabolic risk30,31. Collectively, these ob-
servations indicate that low peak lung function 
in early adulthood may be a warning sign of 
abnormal development and dysfunction in oth-
er systemic organs. If so, spirometry may ac-
tually become a reliable, reproducible, non-in-
vasive and cheap method to identify high-risk 
individuals with disordered lung development 
(and, potentially, other organ systems too), who 

Figure 4. Trans-generational reproducibility of low FEV1 in early adulthood. Panel A: Box plot showing median FEV1 (% predicted) of 
participants in the GenIII cohort with at least one parent in the Framingham Offspring Cohort (FOC) classified as low in early adulthood 
and participants with both FOC parents classified as normal. Panel B: Scatter plot showing the relationship between early adulthood 
FEV1 (% predicted) of GenIII participants and parents’ average early adulthood FEV1 (% predicted) (reproduced from Agustí A, et al.5  
with permission). For further explanations, see text. 
FEV1: forced expiratory volume in one second.
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can be monitored over time and treated earlier 
if necessary29. 

Third, to date, three studies have investigated 
the risk of mortality in different lung function 

trajectories. Our group was the first to show 
that all-cause mortality during follow-up in the 
Framingham Offspring Cohort was higher 
in individuals with low lung function in ear-
ly adulthood (hazard ratio [HR] 2.3 [95% CI 

Figure 5. The interplay between two major biologic mechanisms (organ development, maintenance and repair [green triangle] and 
cumulative tissue injury and ageing [red triangle]) determines over a lifetime health and life expectancy (top triangle). Dashed arrows 
(green and red) indicate that the slope of these lines can vary (for better or worse) in different individuals. ‘Contributing proportion’ 
refers to the proportion of the processes, represented by the green and red triangles, contributing to health status and life expectancy 
(reproduced from Agustí A, et al.29 with permission). For further explanations, see text.
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1.4–3.7], p = 0.001)5. Smoking had an additive 
but independent effect on mortality, and we 
did not find statistically significant differences 
in cause-specific mortality between high and 
low lung function groups, but there was a nu-
merically higher cardiovascular mortality in 
participants with low lung function5. We also 
explored this relationship in an independent 
cohort (Coronary Artery Risk Development in 
Young Adults Study [CARDIA]) and found that 
all-cause mortality before the age of 50 years in 
CARDIA participants with low lung function 
in early adulthood was three times higher than 
that of people with normal lung function (3% 
versus 0.7%, odd ratio [OR] 4.1 [95% CI 1.7–9.6], 
p = 0.001)5. Subsequently, Vasquez et al. re-
ported similar findings in the Tucson Epide-
miological Study of Airway Obstructive Dis-
ease (TESAOD), a population-based prospective 
cohort study of non-Hispanic white households 
initiated in Tucson, Arizona, in 197213. These 
authors confirmed our previous observations5 
by showing that individuals who achieve low 
levels of FEV1 and forced vital capacity (FVC) 
in early adulthood had increased risk for early 
cardiopulmonary mortality13. Associations ap-
peared stronger for FEV1 than FVC, possibly 
because the former is able to capture deficits 
related to both obstructive and restrictive pat-
terns13. Finally, very recently, Marott et al.32 
have reported somewhat conflicting and diffi-
cult to interpret results in patients with COPD 
recruited from the general population. For this 
analysis, Marott et al. studied 1,170 young 
adults who were enrolled in the Copenhagen 
City Heart Study in 1976–1978 or in 1981–1983, 
when they were 21-40 years old. About twenty 
years late, in 2001–2003, when participants 
were 41-66 years old, 144 individuals (12.3%) 
had developed COPD: 79 of them (6.8%) through 
normal maximally attained FEV1 trajectory, 

and 65 (5.6%) with reduced peak lung func-
tion (FEV1 69 ± 7 % of reference) at recruit-
ment (21-40 years of age)32. All participants 
were then followed until 2018 and mortality 
was compared between COPD patients who 
had developed COPD through low maximally 
attained FEV1 trajectory (n = 65) versus those 
who developed the disease through normal 
maximally attained FEV1 trajectory (n = 79)32. 
Results showed that all-cause mortality from 
2001-2003 until 2018 (adjusted HR, 1.93 [95% CI, 
1.14–3.26], p = 0.01), and in particular mortal-
ity caused by non-malignant respiratory dis-
ease (adjusted HR, 6.20 [95% CI, 2.09–18.37], 
p = 0.001), was higher in individuals who de-
velop COPD through the normal maximally 
attained FEV1 trajectory32. The authors hypoth-
esized that these two COPD trajectories may 
reflect different lung pathologies and that the 
normal maximally attained FEV1 trajectory rep-
resents individuals with emphysema as a pre-
dominant pathological disease process, where-
as the low maximally attained FEV1 trajectory 
mostly includes individuals with less emphy-
sema17,21,33. As acknowledged by the authors, 
however, this study has some significant lim-
itations, including: (1) a likely survival bias, 
since participants had to be alive in 2001-2003, 
when they were 41-66 years old, to enter the 
study (baseline data for this analysis), while 
the two studies previously published in the 
general population have both shown that in-
dividuals with low lung function in early adult-
hood (<  30  years of age) die prematurely5,13; 
(2) the rather small number of participants 
included in the two COPD trajectories (65 ver-
sus 79); (3) a potentially confounding effect of 
medications, which was not considered in the 
analysis; and, (4) the lack of imaging data or 
diffusing capacity for carbon monoxide (DLCO) 
measurement, which may have helped to assess 
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the proposed influence of emphysema. In any 
case, these three studies5,13,32 clearly indicate 
that there is a significant association between 
lung function trajectory and mortality risk.

Fourth, in relation to prevention and treat-
ment, it is well established that quitting smok-
ing reduces the rate of lung function decline2,34 
and that several other interventions can po-
tentially prevent abnormal lung development, 
such as decreasing exposure to air pollutants 
(including maternal smoking) during preg-
nancy, childhood and puberty4,20,35, close fol-
low-up of survivors of very preterm birth36, 
encouraging immunization and developing 
better vaccines against acute infant viral dis-
eases4,20, promoting physical activity37-39 and 
healthy diet40-42, including vitamin A42 and vi-
tamin C43 supplementation. CC16 is being in-
vestigated as a potential therapeutic target in 
this setting44,45. 

A final comment relates to the observation 
that about 12% of the general population may 
follow a “supranormal” lung function trajec-
tory20 (Fig. 1). If exposed to noxious environ-
mental conditions, these individuals may have 
lost lung function and still remain within the 
normal range6. Potentially, this can contribute 
to explaining the apparent paradox of identi-
fying individuals with symptoms and/or ev-
idence of lung damage (emphysema) with pre-
served spirometry6.

CONCLUSIONS 

Several genetic and environmental risk fac-
tors conspire to generate a range of lung func-
tion trajectories through life, and some of them 
are associated with significant implications 

for health and disease. A better understanding 
of the biological mechanisms underlying these 
trajectories may help prevent and/or treat them. 
However, we need to act earlier46. Promoting 
the use of spirometry in schools may be a good 
alternative for that46. In this context, spirometry 
can act as a “canary in a coal mine”47. After all, 
remember that a key spirometric variable is the 
“vital” capacity48. What a name! 
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