

Comprehensive Care In Pulmonary Fibrosis

Maria Molina-Molina, MD, PhD^{1,2,3} and Marlies Wijsenbeek, MD, PhD⁴

¹ILD Unit, Respiratory Department, University Hospital of Bellvitge, Barcelona, Spain; ²IDIBELL, Barcelona, Spain; ³Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Barcelona, Spain; ⁴ILD reference centre, Respiratory Department, Erasmus University Medical Centre, Rotterdam, The Netherlands

ABSTRACT

Pulmonary fibrosis is a respiratory condition that associates progressive loss of quality of life mainly due to respiratory failure with emotional impairment due to the loss of autonomy and the poor prognosis. These clinical conditions and the poor prognosis would require a strategy closer to lung cancer than to other respiratory diseases. However, most centres that manage patients with pulmonary fibrosis have not enough resources to properly provide the multidisciplinary approach that they require. Idiopathic pulmonary fibrosis (IPF) is the most frequent and lethal form of lung fibrosis, for which two anti-fibrotic drugs have demonstrated to slow-down disease progression. Both drugs require a close monitoring to ensure adherence and to prevent or reduce adverse effects. Currently, there is an increased demand of improving the multidisciplinary integral treatment of IPF and other lung fibrotic entities to optimise drug benefits and quality of life during the different stages of the disease, including end of life. (BRN Rev. 2019;5(1):35-47)

Corresponding author: Maria Molina-Molina, mariamolinamolina@hotmail.com

Key words: Interstitial lung disease. Multidisciplinary treatment. Palliative care. Pulmonary fibrosis. Quality of life.

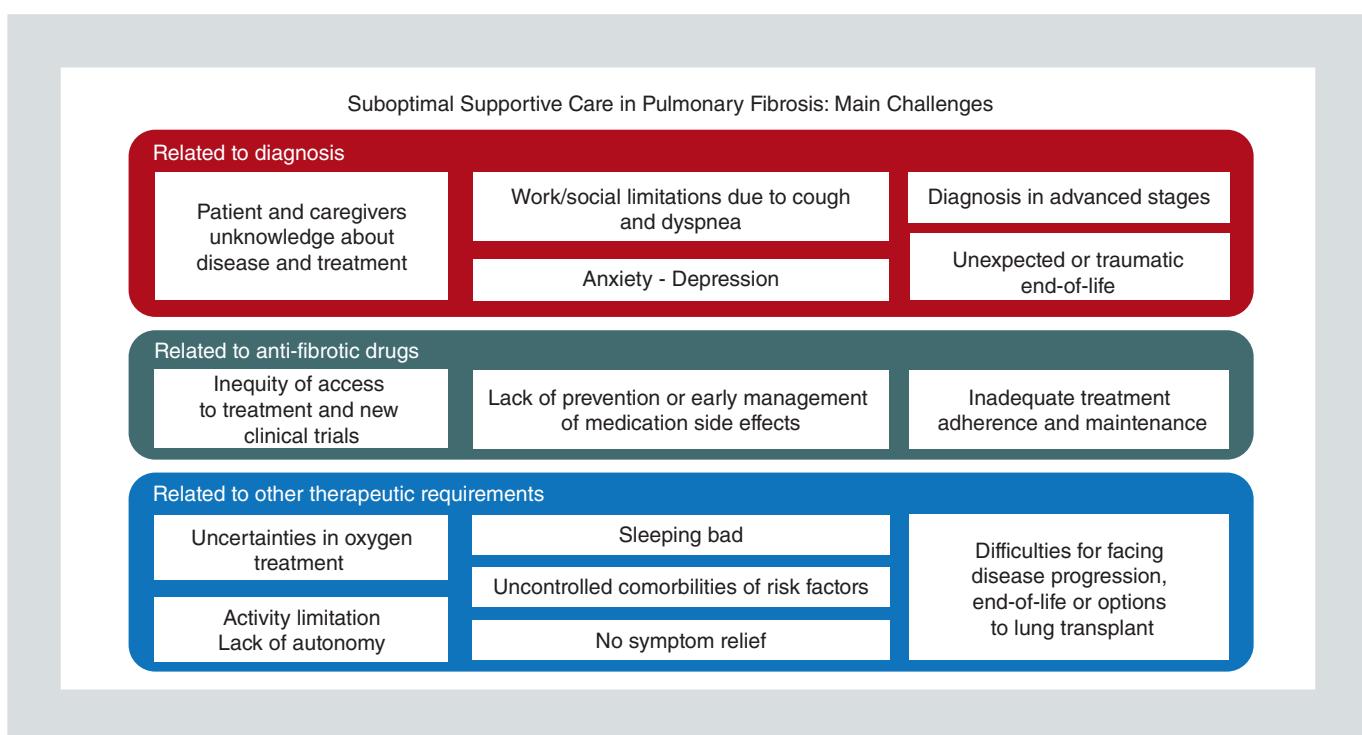
Correspondence to:

Maria Molina-Molina, MD, PhD

ILD Unit, Respiratory Department, University Hospital of Bellvitge
Barcelona, Spain
E-mail: mariamolinamolina@hotmail.com

Received in original form: 10-10-2018

Accepted in final form: 07-11-2018


DOI: 10.23866/BRNRev.2018-0021

INTRODUCTION

Pulmonary fibrosis is a respiratory disorder that in most patients is associated with progressive loss of lung function, ultimately leading to respiratory failure. Patients experience an increase in dyspnoea, cough and activity limitation, globally developing a decrease in quality of life (QoL)¹⁻⁴. Idiopathic pulmonary fibrosis (IPF) is the most frequent and lethal interstitial lung disease (ILD), and it is considered as the paradigm of lung fibrosis¹⁻⁴. However, other progressive fibrotic ILDs, such as chronic hypersensitivity pneumonitis (cHP) or fibrotic non-specific interstitial pneumonia (fNSIP), share some common diagnostic and treatment challenges¹. The therapeutic approach of IPF has notably changed in the last decade, especially with the introduction of the anti-fibrotic medications (pirfenidone and nintedanib)⁵⁻⁸. Both drugs have demonstrated a slowing-down of disease progression and a decrease in the one-year mortality rate^{5,6}. Despite this progress in treatment options, IPF remains a deadly disease; therefore different anti-fibrotic combinations are being tested in clinical trials to improve the outcome⁸. The anti-fibrotic therapeutic approach is also being tested in different types of progressive fibrotic non-IPF patients through ongoing clinical trials by using nintedanib (NCT02999178, INBUILD) or pirfenidone (NCT03099187)⁹. More details about both clinical trials may be checked at <https://www.clinicaltrials.gov>. However, other therapeutic and management requirements that are likewise important but frequently overlooked are increasingly noted^{8,10-47}: patient education and empowering, handling symptomatic treatment from diagnosis, prevention

and early management of adverse effects of anti-fibrotic medication, controlling comorbidities, emotional assessment and psychological treatment when required, nutritional and physical well-being, oxygen therapy and last but not least comfort care at the end-of-life (Fig. 1).

In terms of multidisciplinary diagnostic and treatment management, prognosis and monitoring, IPF and other fibrotic lung diseases are closer to lung cancer than to other common respiratory diseases such as asthma or chronic obstructive pulmonary disease (COPD). The unfortunate main difference with several oncological diseases is the lack of a cohesive global worldwide strategy to establish expert multidisciplinary teams integrating the supportive care that these patients require, in line with other debilitating and lethal rare disorders. Supportive care, also called comfort care or palliative care, improves the QoL of patients who have a serious or life-threatening disease, acting on symptoms, side effects caused by disease treatment, and psychological, social, or spiritual problems related to the disease³⁰⁻³². Recent studies have reported the lack of supportive care in IPF and the related challenges (Fig. 1)³⁰⁻³⁴. Furthermore, some data suggest the potential benefits of implementing a comprehensive and integrating therapeutic strategy^{16,19,21,22,31,32}. Referring to Professor W. Osler's words, when looking for the best care, the focus should be the patient who has the disease, not only the disease. The present review will summarise the main identified challenges in the supportive treatment of pulmonary fibrosis (Fig. 1), and some recent potential initiatives to integrate the multidisciplinary therapeutic management.

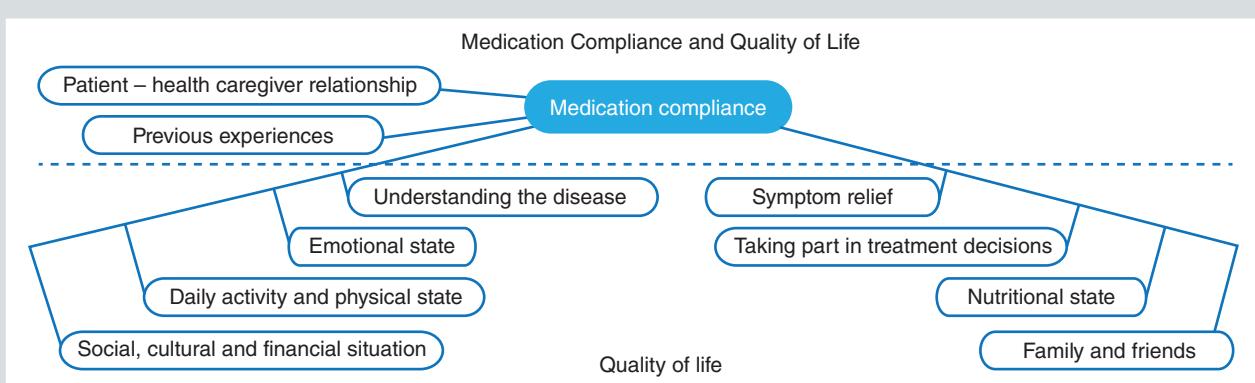


FIGURE 1. Main challenges associated with the suboptimal supportive care in pulmonary fibrosis. Identifying the patient problems related to diagnosis, anti-fibrotic drugs and comorbidities would represent the first step to improve supportive care in fibrotic interstitial lung diseases.

PATIENT EMPOWERING AND PRIORITIES

Patients are increasingly interested in knowing more about the disease and the medicines they take to understand how they can better deal with the disease and participate in therapeutic decisions^{12,18,22}. Furthermore, a growing volume of information from different online sources that may lack of reliability frequently threatens patients' wellbeing⁴⁸. Patients can find better and reliable information at www.eu-ipff.org (website of the European Federation of IPF patients and relatives). Comprehensive and high-quality information about the condition is one of the unmet needs included in the European IPF patient charter¹². There is no perfect recipe for properly giving the information, and every patient requires a tailored approach even for disease

and treatment education. One of the first steps is to start listening to the patient and caregivers, understanding patients' priorities and setting up together sequential objectives^{18,20,27}. This whole process requires time and space, something that the physician and nurse frequently lack and that the current health care systems should recognise and improve. Furthermore, ILD caregivers would benefit from educational programs for improving their communication abilities. Finally, patient associations may help in empowering patients by sharing information, experiences and guidance during the course of the disease. Patient empowerment will depend in part on different educational, cultural and social backgrounds, personal limitations and preferences, and patient-clinician communication. A well-informed patient can make realistic choices, which may also

FIGURE 2. Medication compliance and quality of life. Medication compliance depends on multiple factors, most of them are related to quality of life, except for patient-health caregiver relationship and previous experiences. Improving these factors would implicate a benefit in quality of life and, therefore, a higher probability of medication compliance.

TABLE 1. Predictors of poor medication adherence potentially modifiable through educational interventions to improve idiopathic pulmonary fibrosis (IPF)

Believing you have disease only when signs or symptoms
Considering there is no need for medication if no symptoms
Worrying about side-effects of anti-fibrotic medicines
Feeling medicines are hard to take
Lack of self-confidence in controlling IPF
Lack of confidence in the medical evaluation or diagnosis
Lack of support from healthcare team
Impaired access to care

promote medication compliance and eventually turn into better disease outcomes (Fig. 2, Table 1)¹³⁻³³.

PALLIATION OF SYMPTOMS

Palliative treatment is intended to relieve symptoms and improve QoL at any stage of the disease³⁰⁻⁴⁰. Physicians and nurses in ILD care are tasked with the care of pulmonary fibrotic patients that may present dyspnoea

and cough at any stage of the disease, in an evolving field of new therapies through which patient survival is being prolonged³⁰⁻⁴⁰. In oncology and other chronic disable diseases, palliative medicine has an important role in managing sources of patient distress and improving patients' QoL, which may even help in medication tolerance and compliance (Fig. 2)^{14,16,49}. In practice, palliative care teams usually work alongside a patient's team of oncologists. However, the need for better palliative care in pulmonary fibrosis is increasingly acknowledged. Stimulating collaboration between palliative care and pulmonary fibrotic ILD teams would enable the opportunity to improve symptom relief, QoL and dying for patients^{31,36-39}. Palliative teams are trained in symptom management and patient communication, assistance with medical decision-making and end-of-life care³⁹. Translating this knowledge and activity to the healthcare of patients with pulmonary fibrosis would represent an advance and improvement for the patients' QoL³⁶. On the other hand, ILD specialists need to better interact

with palliative care specialists and inform them about IPF therapies and patient's needs. Palliative care teams vary from country to country, but they are progressively including non-oncological patients in their routine of services. Currently, international strategies, national guidelines and consensus recommendations for integrating palliative care in pulmonary fibrosis are lacking, but urgently needed. Nowadays, palliative care is only accessible for a minority of ILD patients and healthcare providers worldwide.

The main symptoms that drive QoL in IPF are cough, dyspnoea and anxiety²⁸. Different treatment strategies have been used to relieve chronic cough and progressive dyspnoea associated with pulmonary fibrosis, presenting limited evidence and modest results^{29,40-47}. Cough and dyspnoea relief may be achieved with opioid drugs⁴⁰, but sometimes the required dose may affect daily life activities, especially in mild and moderate stages of the disease. Although no perfect therapeutic formula has been identified to palliate both symptoms, different options have been suggested (Table 2). Palliative care teams can play an important role in supporting patients. When offering palliative care referral, explanation about the role of palliative care is crucial, as patients may think that palliative care is synonymous with end-of-life care and, therefore, even sometimes decline this option^{31,35}. Finally, increasing shortness of breath and immobility in advanced stages represent another challenge for many patients and create problems in accessing healthcare. New home care programs that incorporate eHealth technologies hold vast potential for facilitating real-time data about patient situation and requirements^{41,50}. Therefore, the ILD community

TABLE 2. Treatments used for dyspnoea and cough relieve in pulmonary fibrosis

Treatments for the chronic cough ^{24,29,61-64}
a) Exclude other causes of cough
b) Antitussive agents:
– Opioids: morphine, methadone, codeine, and dextromethorphan
– Anaesthetics: gabapentine, pregabalin
– Low dose glucocorticoids (i.e. 2.5-5 mg/day)
– Antifibrotic medication ⁶⁴
– Sodium cromoglycate, PA101*
– Thalidomide*
– Others: Theophylline, Anticholinergic bronchodilator
c) Treatment of GERD if present
Treatments for shortness of breath or dyspnoea ^{38,58,60}
a) Respiratory rehabilitation program ^{58,60}
b) Psychological techniques (reducing anxiety, improving respiratory pattern)
c) Opioids: morphine 10-30 mg/day ⁴⁰

*Thalidomide and PA101 have been tested in clinical trials targeting cough in patients with pulmonary fibrosis. Both showed a reduction of cough frequency compared with placebo, although the trials included a limited number of patients and evaluated short time effect. Thalidomide is not available in all countries.

should work to find better options for symptom palliation from initial stages of the disease and also to set the best healthcare strategy for patient acceptance and participation in care.

PREVENTION AND EARLY TREATMENT OF POSSIBLE DISEASE-MEDICATION ADVERSE EFFECTS

After sharing the information about risks and benefits with the patient, the beginning of anti-fibrotic treatment is recommended facing the diagnosis of IPF^{3,4}. Early diagnosis and initiation of treatment are of critical importance for long-term clinical outcomes¹⁴. Both anti-fibrotic drugs, pirfenidone and nintedanib, present a reasonable safety profile in clinical trials and report only 4-6% of definitive drug discontinuation due to intolerance³⁻⁷. However, data from real-world clinical practice, such as national registries, show higher

TABLE 3. Preventing and early treating anti-fibrotic medication side effects**Pirfenidone**

1 capsule per day (801 mg/day) first week

1 capsule every 12 h (1602 mg/day) second week

1 capsule every 8 h (2403 mg/day) third week

The option of lower dose per capsule is also available and then the titration differs: 1 capsule every 8h first week, 2 capsules every 8h the second week and 3 capsules every 8 h the third week. This option may be better for patients that present slow gastric motility or some related disorder since it allows to perform the titration even more slowly.

Preventive advice:

- The medication should be taken with abundant food and water
- Avoiding: smoking, drinking alcohol, concomitant medication that may alter liver metabolism
- Decreasing risk of photosensitivity: sun-cream (+50 sunscreen protective factor [SPF]), avoiding direct sun exposure (especially after 1-2 h of taking medication), sunglasses and hat, clothes with SPF
- Decreasing risk of nausea and vomiting: avoiding food or treatments that may reduce the stomach motility as fatty foods or opioid pain relievers

Treating photosensitivity and rash:

- After sun cream and low dose of oral corticosteroids (prednisone 2.5-10 mg or equivalent)
- Depending on the severity, the medication should be reduced or discontinued

Treating nausea and vomiting:

- a) Medication that recover digestive motility and ameliorate symptoms: metoclopramide, cisapride,...
- b) Diet based on low fat food. Abundant hydration. Spreading the pills over the meal (if 3 caps/8 h)
- c) Reducing medication. In case of severity, maintenance of gastrointestinal adverse events or rapid weight loss, pirfenidone should be discontinued

Nintedanib

1 capsule 150 mg every 12 h, with food (no dose titration is required)

Preventive advises:

- Avoiding food or drinks that increase digestive motility (e.g., coffee, iced-drinks, pumpkin)
- Avoiding alcohol or concomitant medication that can modify drug-metabolism

Treating diarrhoea

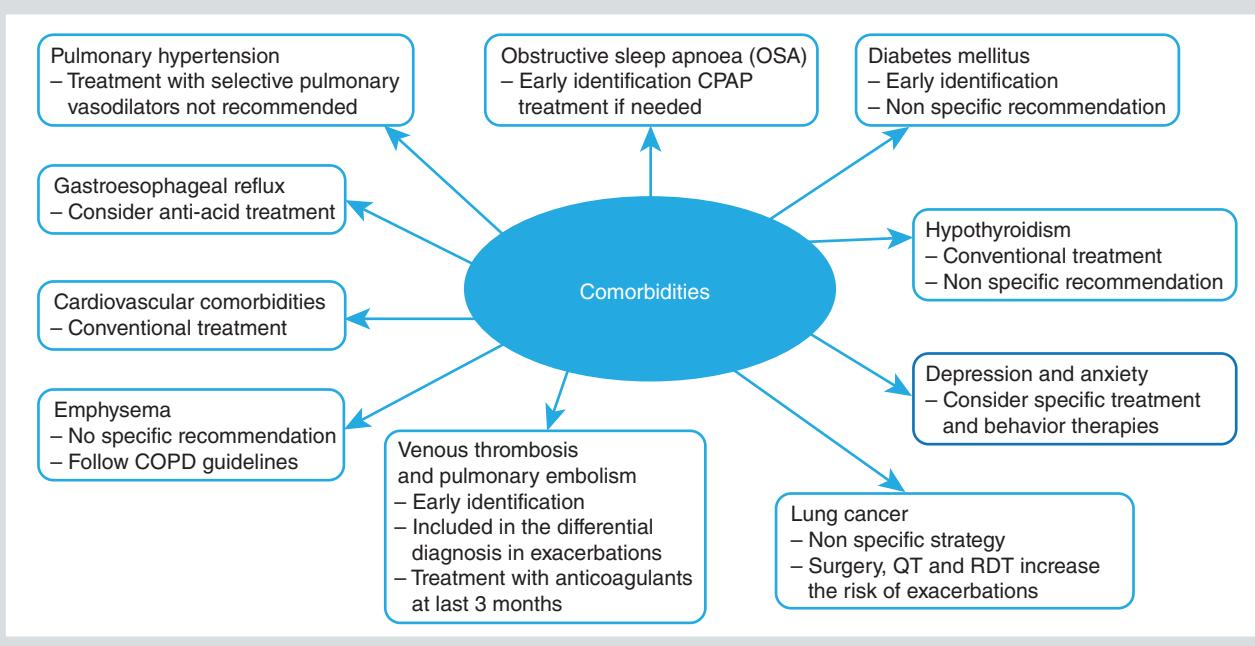
- Astringent diet, abundant hydration and probiotic supplements
- Anti-diarrheal medication (loperamide or similar)
- If symptoms persist despite initial treatment temporarily interrupt treatment
- Resume at full dose after the end of digestive problems. If unable to resume at full dose, decrease to 100 mg/12 h
- Discontinuation if not tolerance of 100 mg/12 h

Liver enzymes (for both drugs):

- Before initiation of the medication and after one-two weeks of treatment a blood test should be performed to evaluate liver tolerance (aspartate transaminase [AST]/alanine transaminase, aka alanine aminotransferase [ALT]), and then once a month up to the third month.
- AST/ALT > 3 to < 5 x upper limit to normal (ULN) without signs of sever liver damage: interrupt medication or reduce dose; once normalising AST/ALT, medication may be reintroduced and increase to full dosage if no new elevated liver enzymes.
- AST/ALT > 5 x ULN or lower values but signs of liver damage: interrupt medication. The reintroduction could be dangerous.

proportion of drug interruption associated with side effects, which negatively impact on QoL^{23,51,52}. Furthermore, the number of on-treatment patients after one year is really variable^{23,51,52}. So, keeping IPF patients on medication depends in part on the health-care setting. A high proportion of patients are being treated in hospitals with not enough patient support nor close follow-up, which may impact compliance and outcomes

for patients¹⁴. Although not all patients that initiate anti-fibrotic medication will develop a side effect, recommendations concerning the drug intake and preventive measures to reduce the risk of adverse events are also useful, providing the patient with some tools for early identification and coping (Table 3). The most frequent pirfenidone-related adverse effects are nausea, vomiting and photosensitivity, with a wide range of variability


depending on the country and even on the region. Nausea and vomiting may be present due to the decrease in gastric motility that pirfenidone may associate. Photosensitivity is more frequent in summer, especially when patients forget the sun protection. Related to nintedanib, the most common adverse effect is diarrhoea, which is usually mild-to-moderate, but sometimes may be the reason for drug discontinuation. For both medications, liver enzymes should be monitored specially during the first month. Liver alteration is only present in 1% of cases but may be life threatening, and, therefore, early identification is mandatory. Both treatments should be administered during the food intake (not before or just after meals) to decrease the gastrointestinal side effects. Frequently, treating adverse effects under supervision, optimising the management and, if required, temporarily reducing or discontinuing the drug may reduce the final medication withdrawal⁸.

MENTAL WELLBEING AND PHYSICAL HEALTH

Every patient may react to disease information and treatment in a completely different way depending on several conditions, including physical health, mental wellbeing, and social support network^{53,54}. Patients with both physical health problems and depression or anxiety are at particular risk since the physical problem can complicate the assessment and treatment of the mental disorder⁵¹. Therefore, improving both the physical and mental health is becoming a priority area for clinicians and policymakers, yet the practical steps needed to achieve this are less clear.

After hearing the diagnosis of IPF, an initial sadness or stress response is frequent and could even be considered a physiological activation of interconnected neuroendocrine circuits to react to a new and threatening problem (the disease). However, if the intensity is too high or the duration too long, a maladaptation may incur to altered mental health, depression or anxiety. Depression and anxiety have been described in around 25% of patients with IPF⁵⁵⁻⁵⁷. Depression and chronic physical illness are in reciprocal relationship with one another: not only do many chronic diseases cause higher rates of depression, but depression has been shown to decrease the potential benefits of the treatment approach⁵⁸. Depression and anxiety may also impact on medication adherence^{55,56} (Fig. 2). Furthermore, IPF patients often describe feelings of loneliness and numbness when learning about their disease, which leads to different other disabling emotions³⁴. Therefore, an optimal evaluation of patients' emotions and mental wellbeing from the initial visits as well as individualising communication with the patient are essential to allow for treatment and support³⁴.

Physical activity and autonomy are fundamental for the physical and mental health, and also for better dealing with any chronic illness⁵³⁻⁵⁵. Reduced physical activity is associated with poor QoL and survival^{14,24,58-60}. Physical activity and respiratory rehabilitation are recommended in the integral care of IPF²⁻⁴. Rehabilitation programs include muscular training by combining exercises of strength and resistance and respiratory education for optimising the pattern of breathing, altogether to improve gas exchange and decreasing anxiety^{59,60}. The approach to activity and training will likely change throughout

FIGURE 3. Comorbidities identified in pulmonary fibrosis. The most frequent comorbidities are gastroesophageal reflux, diabetes mellitus, hypothyroidism, cardiovascular diseases, depression-anxiety and emphysema. The prevalence of lung cancer and obstructive sleep apnoea is higher than in the global population. Lung cancer, pulmonary hypertension and pulmonary embolism are associated with poor prognosis (*reproduced and modified with permission from Millan-Billi P et al.⁴⁵*).

COPD: chronic obstructive pulmonary disease; CPAP: continuous positive airway pressure; QT: chemotherapy; RDT: radiotherapy.

the different stages of the disease and also depend on the daily life activities or habits. Patients with mild or no symptoms and no limitations for daily life activities would need some form of supervision of their weekly physical activity or exercise, or, in case of sedentary habits, initiate them within a pulmonary rehabilitation program, while patients in more advanced stages could benefit from physiotherapy to improve patient's autonomy. The presence of debilitating comorbidities and their treatment may also interfere in the patient's physical activity and QoL⁴⁵ (Fig. 3). However, the educational and activity content of specified pulmonary fibrosis physiotherapy or respiratory rehabilitation programs have not been designed yet⁴⁴. Furthermore, the

beneficial effect of pulmonary rehabilitation in IPF has been proven evaluating the activity performed during some months, but often the effect may wane out at longer term⁵⁸⁻⁶⁰. Patients with pulmonary fibrosis may have severe hypoxia (oxygen saturation [SaO₂] < 88%) during exercise from mild-to-moderate stages of the disease¹⁻⁴, which may be a challenge for exercise programs. Oxygen desaturation during the six-minute walking test (6MWT) has been suggested as a prognostic factor of disease progression and mortality^{46,47}. Although oxygen therapy improves exercise capacity in IPF⁴⁷, the potential benefits for the disease of incorporating oxygen treatment during activity still remains unknown. Furthermore, the benefits of pulmonary rehabilitation

programs have been mostly evaluated in other respiratory diseases such as COPD, which present a different mechanism leading to dyspnoea and may require another training approach. Recent reviews concluded that pulmonary rehabilitation increases exercise tolerance and improves QoL in patients with IPF⁵⁸⁻⁶⁰. Therefore, more research evidence is required to set the optimal type of program for physical activity or pulmonary rehabilitation in IPF and also to test its long-term effects.

LOOKING FOR THE BEST SUPPORTIVE CARE

The best supportive care would be the combination of interventions in a holistic multidisciplinary therapeutic approach that looks for improving wellbeing and QoL in patients suffering progressive and devastating illnesses, considering the different needs related to the disease, the personal or cultural believing and the physical and psychosocial state^{31,65}. The best care in IPF and other pulmonary fibrotic diseases should be patient-centered and not only include an optimal anti-fibrotic approach but also any intervention that reduces the burden of the disease, helps to control drug-related adverse events, and enhances the physical and mental state of the patient, aimed at improving the QoL. Therefore, moving from disease-centred care to patient-centred care. The common tools to assess QoL are specific questionnaires that include the patient-reported outcomes¹⁶. The most common questionnaires used in IPF to evaluate symptoms and other health related conditions are¹⁶: 1) The King's Brief Interstitial Lung Disease health status questionnaire (K-BILD),

which was developed for IPF and other ILDs; 2) The Saint George's Respiratory Questionnaire (SGRQ), which was first validated in other chronic respiratory diseases and, more recently, modified and revalidated for IPF population (SGRQ-I); 3) A Tool to Assess Quality of Life in IPF (ATAQ-IPF), which was developed in a reduced number of IPF patients but, is now widely used in clinical trials and patient care; 4) The EuroQol 5-Dimensional Quality of Life Questionnaire (EQ-5D), a short questionnaire to evaluate health state, that has been used in clinical trials and it is being validated for IPF; 5) The University of California San Diego Shortness of Breath Questionnaire (UCSD's questionnaire), a dyspnoea-specific questionnaire that has been used in IPF clinical trials but not specifically validated for this respiratory condition; 6) The Leicester Cough Questionnaire (LCQ), a cough-specific questionnaire that has been used in IPF studies; 7) The Cough Quality of Life (CQoL) questionnaire, which has been evaluated in IPF, but not completely validated for this disease; 8) The Needs Assessment Tool: Progressive Disease for People with Interstitial Lung Disease (NAT:PD-ILD), a tool to evaluate ILD patient requirements.

Dyspnoea and cough may be also evaluated through different scales. The Medical Research Council (MRC) dyspnoea and the Borg rating of perceived exertion scales have been widely used in IPF clinical practice¹⁶. Interventions that may improve QoL in IPF are related to disease treatment, symptom relieve, physical condition and mental equilibrium. To facilitate a systematic and comprehensive approach to treatment and follow-up in IPF the "ABCDE" of care has recently been suggested¹⁶: A) Assess patients' needs and

values. Continuous reassessment of requirements, wishes, and adaptation is crucial to properly provide the needed health care at each stage or time point of the disease. B) Backing patients: information and education of patients and caregivers about the disease and treatments are fundamental to enhance communication. C) Comorbidities and comfort care. As previously mentioned, symptoms worsen during disease progression and different strategies may be useful to control or relief them. Furthermore, comorbidities are frequently present, and some of them may reduce life expectancy (Fig. 3). Gastroesophageal reflux has been associated with higher risk of acute exacerbations. Associated cardiovascular disease increases the mortality of IPF patients, so healthy nutritional habits, physical activity and avoiding cardiovascular risk factors such as tobacco may benefit patient survival. Smoking is also a risk factor for other deadly comorbidities such as lung cancer and emphysema and may interfere in the anti-fibrotic metabolism, so smoking cessation is mandatory in IPF. Other frequent comorbidities such as obstructive sleep apnoea (OSA), hypothyroidism, anxiety/depression, and pulmonary hypertension may be the reason of worsening in health status. Therefore, the proper treatment approach of comorbidities would improve patients' health. D) Disease-modifying treatment. The existence of two anti-fibrotic drugs that slow-down disease progression is a hope for these patients. Preventing or early treating potential adverse events may increase the medication adherence and permanence, which allow optimizing treatment benefits. Furthermore, offering the possibility of new anti-fibrotic combinations in clinical trials and/or, in those cases that meet the criteria, lung transplantation

should be a common procedure not only when disease progress but also from the initial visits in some cases. E) End-of-life care. Talking about the end of life with the patient and caregivers remain a challenge in IPF and other lung fibrotic diseases; however it is useful to enable patients and families to make decisions in line with their values and preferences^{16,65}. Although the integration of palliative care into non-malignant life-threatening disease is not routine, family members of patients that received care at home with hospice services were more likely to report a less harmful dying experience.

The figure of a specialised nurse is crucial to engage patients and caregivers in being part of the treatment decision-making, looking for the best supportive care plan in each patient and ensuring the updating about the clinical and personal situation of the patient at the different time-points of the follow-up. Furthermore, the ILD nurse would act as a connection hub between the primary care and the ILD team at the hospital and also between the different disciplinary therapeutic or management areas (e.g., psychologists, social care, nutritionist, physiotherapist/rehabilitation). However, the presence of a specialised ILD nurse in those centres that provide care for ILD patients remains an unmet need in most countries and it is probably one of the first steps to achieve for any strategy that would include a best care practice in fibrotic ILDs. Education plans and new health care policies are required to enhance the incorporation of specialised ILD nurses in all countries.

Ongoing clinical trials with new anti-fibrotic combinations would require specifying and measuring all supportive care interventions.

In fact, supportive interventions would have a major role in increasing tolerance to new combination medications. However, only randomised clinical trials will demonstrate the real benefits of supportive care measurements and may evaluate the potential interventions that could be considered as best supportive care. Different interventions and programs that would include the holistic therapeutic approach individually required for each patient could be tested. Currently, there is an ongoing clinical trial that measures the potential benefit of the combination of education, self-management training for most common and distressing symptoms, caring for caregiver, and planning for future and development of shared end-of-life goals (SUPPORT, NCT02929017) comparing with routine care in IPF⁶⁶. The only inclusion criteria for patients recruitment was the confident diagnosis of IPF. The inclusion criteria for caregivers were: age older than 18 years, non-paid caregivers, and identified by patient as providing the majority of support. Probably, the benefits of different supportive care strategies or changes in some interventions will be compared in the future when more than one prospective clinical trial would be available.

CONCLUSIONS

Patients with progressive pulmonary fibrosis require a holistic multidisciplinary approach. Multidimensional assessments include emotional, physical, social and cultural aspects. Exploring the different unmet needs for the individual patient requires specific training and sensitivity that currently is more akin to the oncological field than to other types of chronic respiratory diseases. An early referral

to an ILD centre offers the advantages of comprehensive diagnostic and disease-management expertise. However, advances are required for improving symptom relief, psychological support, and standardizing the most beneficial programs of physical activity and pulmonary rehabilitation. Furthermore, once the holistic approach in patients with pulmonary fibrosis is optimised, the next step is to create a sustainable network model that allows comprehensive care for every ILD patient, wherever the patient lives. Such a collaborative effort will represent a milestone in overcoming the huge inequities in treatment that are present world-wide.

DISCLOSURES

Maria Molina-Molina has received grants and payments for advisory board from Esteve Yeijn Healthcare (ETH), Glaxo Smith Kline, Chiesi, Hoffman la Roche, Boeringher Ingelheim, Pfizer, and Menarini. The ETH financial contribution has covered part of the salary of Molina-Molina during 6 months prior publication of this manuscript. Marlies Wijsenbeek received unrestricted research grants and speaker and advisory board fees from Boehringer Ingelheim and Hoffman la Roche outside the submitted work. All grants and fees were paid to her institution.

REFERENCES

1. American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. *Am J Respir Crit Care Med.* 2002;165:277-304.
2. Raghu G, Collard HR, Egan JJ et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. *Am J Respir Crit Care Med.* 2011;183:788-824.
3. Raghu G, Rochewerg B, Zhang Y et al. An official ATS/ERS/JRS/ALAT clinical practice guideline: treatment of idiopathic pulmonary fibrosis. *An*

update of the 2011 clinical practice guideline. *Am J Respir Crit Care Med.* 2015;192:e3-19.

4. Xaubet A, Molina-Molina M, Acosta O et al. Guidelines for the medical treatment of idiopathic pulmonary fibrosis. *Arch Bronconeumol.* 2017;53: 263-9.
5. Richeldi L, du Bois RM, Raghu G et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. *N Engl J Med.* 2014;370:2071-82.
6. King Jr TE, Bradford WZ, Castro-Bernardini S et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis *N Engl J Med.* 2014; 370:2083-92.
7. Raghu G. Idiopathic pulmonary fibrosis: lessons from clinical trials over the past 25 years. *Eur Respir J.* 2017;50.
8. Kreuter M, Bonella F, Wijzenbeek M, Maher TM, Spagnolo P. Pharmacological treatment of idiopathic pulmonary fibrosis: current approaches, unsolved issues and future perspectives. *Biomed Res Int.* 2015;2015:329481.
9. Maher T, Corte TJ, Fischer A et al. Pirfenidone in patients with unclassifiable progressive fibrosing interstitial lung disease: design of a double-blind, randomised, placebo-controlled phase II trial. *BMJ Open Resp Res.* 2018; 5:e000289.
10. Boland JW, Reigada C, Yorke J et al. The adaptation, face, and content validation of a needs assessment tool: progressive disease for people with interstitial lung disease. *J Palliat Med.* 2016;19:549-55.
11. Collard HR, Tino G, Noble PW et al. Patient experiences with pulmonary fibrosis *Respir Med.* 2007;101:1350-54.
12. Bonella F, Wijzenbeek M, Molina-Molina M et al. European IPF Patient Charter: unmet needs and a call to action for healthcare policymakers *Eur Respir J.* 2016;47:597-606.
13. Maher TM, Molina-Molina M, Russell AM et al. Unmet needs in the treatment of idiopathic pulmonary fibrosis-insights from patient chart review in five European countries. *BMC Pulm Med.* 2017;17:124.
14. Martinez FJ, Flaherty KR. Comprehensive and individualized patient care in idiopathic pulmonary fibrosis: refining approaches to diagnosis, prognosis and treatment. *Chest.* 2017;151:1173-4.
15. Lee JS, McLaughlin S, Collard HR. Comprehensive care of the patient with idiopathic pulmonary fibrosis. *Curr Opin Pulm Med.* 2011;17:348-54.
16. van Manen MJ, Geelhoed JJ, Tak NC, Wijzenbeek MS. Optimizing quality of life in patients with idiopathic pulmonary fibrosis. *Ther Adv Respir Dis.* 2017;11:157-69.
17. Belkin A, Albright K, Swigris JJ. A qualitative study of informal caregivers' perspectives on the effects of idiopathic pulmonary fibrosis. *BMJ Open Respir Res.* 2014;1:e000007.
18. Duck A, Spencer LG, Bailey S, Leonard C, Ormes J, Caress AL. Perceptions, experiences and needs of patients with idiopathic pulmonary fibrosis. *J Adv Nurs.* 2015;71:1055-65.
19. Thickett DR, Kendall C, Spencer LG et al. Improving care for patients with idiopathic pulmonary fibrosis (IPF) in the UK: a round table discussion *Thorax.* 2014;69:1136-40.
20. Russell AM, Ripamonti E, Vancheri. Qualitative European survey of patients with idiopathic pulmonary fibrosis: patients' perspectives of the disease and treatment. *BMC Pulm Med.* 2016;16:10.
21. Sampson C, Gill BH, Harrison NK, Nelson A, Byrne A. The care needs of patients with idiopathic pulmonary fibrosis and their carers (CaNoPy): results of a qualitative study *BMC Pulm Med.* 2015;15:155.
22. Wuyts WA, Peccatori FA, Russell AM. Patient-centred management in idiopathic pulmonary fibrosis: similar themes in three communication models. *Eur Respir Rev.* 2014;23:231-8.
23. Kreuter M, Swigris J, Pittrow D et al. Health related quality of life in patients with idiopathic pulmonary fibrosis in clinical practice: insights-IPF registry. *Respir Res.* 2017;18:139.
24. Bajwah S, Ross JR, Peacock JL et al. Interventions to improve symptoms and quality of life of patients with fibrotic interstitial lung disease: a systematic review of the literature. *Thorax.* 2013;68:867-79.
25. Yount SE, Beaumont JL, Chen SY et al. Health-related quality of life in patients with idiopathic pulmonary fibrosis. *Lung.* 2016;194:227-34.
26. Overgaard D, Kaldan G, Marsaa K, Nielsen TL, Shaker SB, Egerod I. The lived experience with idiopathic pulmonary fibrosis: a qualitative study. *Eur Respir J.* 2016;47:1472-80.
27. van Manen MJ, Kreuter M, van den Blink B et al. What patients with pulmonary fibrosis and their partners think: a live, educative survey in the Netherlands and Germany. *ERJ Open Res.* 2017;3:00065-02016.
28. Glaspole I, Chapman SA, Cooper WA et al. Health-related quality of life in idiopathic pulmonary fibrosis: Data from the Australian IPF Registry. *Respirology.* 2017; 22:950-6.
29. Garibaldi BT, Danoff SK. Symptom-based management of the idiopathic interstitial pneumonia. *Respirology.* 2016;21:1357-65.
30. Bajwah S, Ross JR, Wells AU et al. Palliative care for patients with advanced fibrotic lung disease: a randomized controlled phase II and feasibility trial of a community case conference intervention. *Thorax.* 2015;70:830-9.
31. Kreuter M, Bendstrup E, Russell AM et al. Palliative care in interstitial lung disease: living well. *Lancet Respir Med.* 2017;5:968-80.
32. Higginson I, Bouswein C, Reilly Ch et al. An integrated palliative and respiratory care service for patients with advanced disease and refractory breathlessness: a randomized controlled trial. *Lancet Respir Med.* 2014;2:979-87.
33. Wijzenbeek M, Bendstrup E, Ross J, Wells A. Cultural differences in palliative care in patients with idiopathic pulmonary fibrosis. *Chest.* 2015;148:e56.
34. Bajwah S, Higginson IJ, Ross JR et al. The palliative care needs for fibrotic interstitial lung disease: a qualitative study of patients, informal caregivers and health professionals. *Palliat Med.* 2013;27:869-76.
35. Lindell KO, Kavalieratos D, Gibson KF, Tycon L, Rosenzweig M. The palliative care needs of patients with idiopathic pulmonary fibrosis: A qualitative study of patients and family caregivers. *Heart Lung.* 2017;46:24-9.
36. Sharp C, Lamb H, Jordan N et al. Development of tools to facilitate palliative and supportive care referral for patients with idiopathic pulmonary fibrosis. *BMJ Support Palliat Care.* 2018;8:340-6.
37. Matsunuma R, Takato H, Takeda Y et al. Patients with end-stage interstitial lung disease may have more problems with dyspnea than end-stage lung cancer patients. *Indian J Palliat Care.* 2016;22:282-7.
38. Ahmadi Z, Wysham NG, Lundstrom S, Janson C, Currow DC, Ekstrom M. End-of-life care in oxygen-dependent ILD compared with lung cancer: a national population-based study. *Thorax.* 2016;71:510-6.
39. Liang Z, Hoffman LA, Nouraei M et al. Referral to palliative care infrequent in patients with idiopathic pulmonary fibrosis admitted to an intensive care unit. *J Palliat Med.* 2017;20:134-40.
40. Kohberg C, Andersen CU, Bendstrup E. Opioids: an unexplored option for treatment of dyspnea in IPF. *Eur Clin Respir J.* 2016;3:30629.
41. Moor CC, Wapenaar M, Miedema JR, Geelhoed JJM, Chandoesing PP, Wijzenbeek MS. A home monitoring program including real-time wireless home spirometry in idiopathic pulmonary fibrosis: a pilot study on experiences and barriers. *Respir Res.* 2018;19:105.
42. Oldham JM, Collard HR. Comorbid conditions in idiopathic pulmonary fibrosis: recognition and management. *Front Med (Lausanne).* 2017;4:123.
43. Mayer KC, Danoff SK, Lancaster LH, Nathan SD. Management of idiopathic pulmonary fibrosis in the elderly patient: addressing key questions. *Chest.* 2015;148:242-52.
44. Holland AE, Fiore JF, Goh N et al. Be honest and help me prepare for the future: what people with interstitial lung disease want from education in pulmonary rehabilitation. *Chron Respir Dis.* 2015;12:93-101.
45. Millan-Billi P, Serra C, Alonso Leon A, Castillo D. Comorbidities, complications and non-pharmacologic treatment in idiopathic pulmonary fibrosis. *Med Sci (Basel).* 2018;6.
46. Flaherty KR, Andrei AC, Murray S et al. Idiopathic pulmonary fibrosis: Prognostic value of changes in physiology and six-minute-walk test. *Am J Respir Crit Care Med.* 2006;174:803-9.
47. Visca D, Montgomery A, de Lauretis A et al. Ambulatory oxygen in interstitial lung disease. *Eur Respir J.* 2011; 38:987-90.
48. JH Fisher, D O'Connor, AM Flexman, Shapera S, Ryerson CJ. Accuracy and reliability of internet resources for information on idiopathic pulmonary fibrosis. *Am J Respir Crit Care Med.* 2016;194:218-25.

49. Mann DM, Ponieman D, Leventhal H, Halm EA. Predictors of adherence to diabetes medications: the role of disease and medication beliefs. *J Behav Med.* 2009;32:278-84.

50. CC Moor, MJG van Manen, NC Tak et al. Development and feasibility of an eHealth tool for idiopathic pulmonary fibrosis. *Eur Respir J.* 2018;51.

51. Behr J, Kreuter M, Hoeper MM et al. Management of patients with idiopathic pulmonary fibrosis in clinical practice: the INSIGHTS-IPF registry. *Eur Respir J.* 2015;46:186-96.

52. Guenther A, Krauss E, Tello S et al. The European IPF registry (eurIPFreg): baseline characteristics and survival of patients with idiopathic pulmonary fibrosis. *Respir Res.* 2018;19:141.

53. Checkroud SR, Gueorguieva R, Zheutlin AB et al. Association between physical exercise and mental health in 1.2 million individuals in the USA between 2011 and 2015: a cross-sectional study. *Lancet Psychiatry.* 2018;5:7 39-46.

54. Iani L, Lauriola M, Angeramo AR, Malinconico E, Porcelli P. Sense of meaning influences mental functioning in chronic renal patients. *J Health Psychol.* 2018;1359105318781908.

55. Torrisi SE, Vancheri A, Pavone M, Sambataro G, Palmucci S, Vancheri C. Comorbidities of IPF: How do they impact on prognosis. *Pulm Pharmacol Ther.* 2018.

56. Owens GM. Strategies to manage costs in idiopathic pulmonary fibrosis. *Am J Manag Care.* 2017;23(11 Suppl):S191-S196

57. Lee YJ, Choi SM, Lee YJ et al. Clinical impact of depression and anxiety in patients with idiopathic pulmonary fibrosis. *PLoS One.* 2017;12:e0184300.

58. Cheng L, Tan B, Yin Y et al. Short- and long-term effects of pulmonary rehabilitation for idiopathic pulmonary fibrosis: a systematic review and meta-analysis. *Clin Rehabil.* 2018;32:1299-1307.

59. Rochester CL, Vogiatzis I, Holland AE et al. An official American Thoracic Society/European Respiratory Society policy statement: Enhancing implementation, use, and delivery of pulmonary rehabilitation. *Am J Respir Crit Care Med.* 2015; 192:1373-86.

60. Gomes-Neto M, Silva CM, Ezequiel D, Conceição CS, Saquetto M, Machado AS. Impact of pulmonary rehabilitation on exercise tolerance and quality of life in patients with idiopathic pulmonary fibrosis: A SYSTEMATIC REVIEW AND META-ANALYSIS. *J Cardiopulm Rehabil Prev.* 2018;38: 273-8

61. Birring SS, Kavanagh JE, Irwin RS, Keogh K, Lim KG, Ryu JH; Collaborators. Treatment of interstitial lung disease associated cough: CHEST Guideline and Expert Panel Report. *Chest.* 2018;20.

62. Shaw J, Marshall T, Morris H, Hayton C, Chaudhuri N. Idiopathic pulmonary fibrosis: a holistic approach to disease management in the antifibrotic age. *J Thorac Dis.* 2017;9:4700-07.

63. Birring SS, Wijsenbeek MS, Agrawal S et al. A novel formulation of inhaled sodium cromoglicate (PA101) in idiopathic pulmonary fibrosis and chronic cough: a randomised, double-blind, proof-of-concept, phase 2 trial. *Lancet Respir Med.* 2017;5:806-15.

64. van Manen MJG, Birring SS, Vancheri C et al. Effect of pirfenidone on cough in patients with idiopathic pulmonary fibrosis. *Eur Respir J.* 2017;50; 1701157.

65. Ferrara G, Luppi F, Birring SS, Cerri S, Caminati A, Sköld M, Kreuter M. Best supportive care for idiopathic pulmonary fibrosis: current gaps and future directions. *Eur Respir Rev.* 2018;27:170076.

66. Lindell KO, Nouraie M, Klesen MJ et al. Randomised clinical trial of an early palliative care intervention (SUPPORT) for patients with idiopathic pulmonary fibrosis (IPF) and their caregivers: protocol and key design considerations. *BMJ Open Resp Res* 2018;5:e000272.